Camera signal dependencies within coaxial melt pool monitoring in laser powder bed fusion

2020 ◽  
Vol 26 (1) ◽  
pp. 100-106 ◽  
Author(s):  
Tobias Kolb ◽  
Reza Elahi ◽  
Jan Seeger ◽  
Mathews Soris ◽  
Christian Scheitler ◽  
...  

Purpose The purpose of this paper is to analyse the signal dependency of the camera-based coaxial monitoring system QMMeltpool 3D (Concept Laser GmbH, Lichtenfels, Germany) for laser powder bed fusion (LPBF) under the variation of process parameters, position, direction and layer thickness to determine the capability of the system. Because such and similar monitoring systems are designed and presented for quality assurance in series production, it is important to present the dominant signal influences and limitations. Design/methodology/approach Hardware of the commercially available coaxial monitoring QMMeltpool 3D is used to investigate the thermal emission of the interaction zone during LPBF. The raw images of the camera are analysed by means of image processing to bypass the software of QMMeltpool 3D and to gain a high level of signal understanding. Laser power, scan speed, laser spot diameter and powder layer thickness were varied for single-melt tracks to determine the influence of a parameter variation on the measured sensory signals. The effects of the scan direction and position were also analysed in detail. The influence of surface roughness on the detected sensory signals was simulated by a machined substrate plate. Findings Parameter variations are confirmed to be detectable. Because of strong directional and positional dependencies of the melt-pool monitoring signal a calibration algorithm is necessary. A decreasing signal is detected for increasing layer thickness. Surface roughness is identified as a dominating factor with major influence on the melt-pool monitoring signal exceeding other process flaws. Research limitations/implications This work was performed with the hardware of a commercially available QMMeltpool 3D system of an LPBF machine M2 of the company Concept Laser GmbH. The results are relevant for all melt-pool monitoring research activities connected to LPBF, as well as for end users and serial production. Originality/value Surface roughness has not yet been revealed as being one of the most important origins for signal deviations in coaxial melt-pool monitoring. To the best of the authors’ knowledge, the direct comparison of influences because of parameters and environment has not been published to this extent. The detection, evaluation and remelting of surface roughness constitute a plausible workflow for closed-loop control in LPBF.

2020 ◽  
Vol 26 (10) ◽  
pp. 1827-1836
Author(s):  
Christopher Gottlieb Klingaa ◽  
Sankhya Mohanty ◽  
Jesper Henri Hattel

Purpose Conformal cooling channels in additively manufactured molds are superior over conventional channels in terms of cooling control, part warpage and lead time. The heat transfer ability of cooling channels is determined by their geometry and surface roughness. Laser powder bed fusion manufactured channels have an inherent process-induced dross formation that may significantly alter the actual shape of nominal channels. Therefore, it is crucial to be able to predict the expected surface roughness and changes in the geometry of metal additively manufactured conformal cooling channels. The purpose of this paper is to present a new methodology for predicting the realistic design of laser powder bed fusion channels. Design/methodology/approach This study proposes a methodology for making nominal channel design more realistic by the implementation of roughness prediction models. The models are used for altering the nominal shape of a channel to its predicted shape by point cloud analysis and manipulation. Findings A straight channel is investigated as a simple case study and validated against X-ray computed tomography measurements. The modified channel geometry is reconstructed and meshed, resulting in a predicted, more realistic version of the nominal geometry. The methodology is successfully tested on a torus shape and a simple conformal cooling channel design. Finally, the methodology is validated through a cooling test experiment and comparison with simulations. Practical implications Accurate prediction of channel surface roughness and geometry would lead toward more accurate modeling of cooling performance. Originality/value A robust start to finish method for realistic geometrical prediction of metal additive manufacturing cooling channels has yet to be proposed. The current study seeks to fill the gap.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3284
Author(s):  
Asif Ur Rehman ◽  
Muhammad Arif Mahmood ◽  
Fatih Pitir ◽  
Metin Uymaz Salamci ◽  
Andrei C. Popescu ◽  
...  

In the laser powder bed fusion (LPBF) process, the operating conditions are essential in determining laser-induced keyhole regimes based on the thermal distribution. These regimes, classified into shallow and deep keyholes, control the probability and defects formation intensity in the LPBF process. To study and control the keyhole in the LPBF process, mathematical and computational fluid dynamics (CFD) models are presented. For CFD, the volume of fluid method with the discrete element modeling technique was used, while a mathematical model was developed by including the laser beam absorption by the powder bed voids and surface. The dynamic melt pool behavior is explored in detail. Quantitative comparisons are made among experimental, CFD simulation and analytical computing results leading to a good correspondence. In LPBF, the temperature around the laser irradiation zone rises rapidly compared to the surroundings in the powder layer due to the high thermal resistance and the air between the powder particles, resulting in a slow travel of laser transverse heat waves. In LPBF, the keyhole can be classified into shallow and deep keyhole mode, controlled by the energy density. Increasing the energy density, the shallow keyhole mode transforms into the deep keyhole mode. The energy density in a deep keyhole is higher due to the multiple reflections and concentrations of secondary reflected beams within the keyhole, causing the material to vaporize quickly. Due to an elevated temperature distribution in deep keyhole mode, the probability of pores forming is much higher than in a shallow keyhole as the liquid material is close to the vaporization temperature. When the temperature increases rapidly, the material density drops quickly, thus, raising the fluid volume due to the specific heat and fusion latent heat. In return, this lowers the surface tension and affects the melt pool uniformity.


2018 ◽  
Vol 4 (2) ◽  
pp. 109-116 ◽  
Author(s):  
Yahya Mahmoodkhani ◽  
Usman Ali ◽  
Shahriar Imani Shahabad ◽  
Adhitan Rani Kasinathan ◽  
Reza Esmaeilizadeh ◽  
...  

Author(s):  
Alexander Leicht ◽  
Marie Fischer ◽  
Uta Klement ◽  
Lars Nyborg ◽  
Eduard Hryha

AbstractAdditive manufacturing (AM) is able to generate parts of a quality comparable to those produced through conventional manufacturing, but most of the AM processes are associated with low build speeds, which reduce the overall productivity. This paper evaluates how increasing the powder layer thickness from 20 µm to 80 µm affects the build speed, microstructure and mechanical properties of stainless steel 316L parts that are produced using laser powder bed fusion. A detailed microstructure characterization was performed using scanning electron microscopy, electron backscatter diffraction, and x-ray powder diffraction in conjunction with tensile testing. The results suggest that parts can be fabricated four times faster with tensile strengths comparable to those obtained using standard process parameters. In either case, nominal relative density of > 99.9% is obtained but with the 80 µm layer thickness presenting some lack of fusion defects, which resulted in a reduced elongation to fracture. Still, acceptable yield strength and ultimate tensile strength values of 464 MPa and 605 MPa were obtained, and the average elongation to fracture was 44%, indicating that desirable properties can be achieved.


2016 ◽  
Vol 22 (5) ◽  
pp. 778-787 ◽  
Author(s):  
Brandon Lane ◽  
Shawn Moylan ◽  
Eric P. Whitenton ◽  
Li Ma

Purpose Quantitative understanding of the temperatures, gradients and heating/cooling rates in and around the melt pool in laser powder bed fusion (L-PBF) is essential for simulation, monitoring and controls development. The research presented here aims to detail experiment design and preliminary results of high speed, high magnification, in-situ thermographic monitoring setup on a commercial L-PBF system designed to capture temperatures and dynamic process phenomena. Design/methodology/approach A custom door with angled viewport was designed for a commercial L-PBF system which allows close access of an infrared camera. Preliminary finite element simulations provided size, speed and scale requirements to design camera and optics setup to capture melt pool region temperatures at high magnification and frame rate speed. A custom thermal calibration allowed maximum measurable temperature range of 500°C to 1,025°C. Raw thermographic image data were converted to temperature assuming an emissivity of 0.5. Quantitative temperature results are provided with qualitative observations with discussion regarding the inherent challenges to future thermographic measurements and process monitoring. Findings Isotherms around the melt pool change in size depending on the relative location of the laser spot with respect to the stripe edges. Locations near the edges of a stripe are cooled to lower temperatures than the center of a stripe. Temperature gradients are highly localized because of rough or powdery surface. At a specific location, temperatures rise from below the measurable temperature range to above (<550°C to >1100°C) within two frames (<1.11 m/s). Particle ejection is a notable phenomenon with measured ejection speeds >11.7 m/s. Originality/value Several works are detailed in the Introduction of this paper that detail high-speed visible imaging (not thermal imaging) of custom or commercial LBPF processes, and lower-speed thermographic measurements for defect detection. However, no work could be found that provides calibrated, high-speed temperature data from a melt-pool monitoring configuration on a commercial L-PBF system. In addition, the paper elucidates several sources of measurement uncertainty (e.g. calibration, emissivity and time and spatial resolution), describes inherent measurement challenges based on observations of the thermal images and discusses on the implications to model validation and process monitoring and control.


2020 ◽  
Vol 26 (7) ◽  
pp. 1197-1208
Author(s):  
Subrata Deb Nath ◽  
Gautam Gupta ◽  
Martin Kearns ◽  
Ozkan Gulsoy ◽  
Sundar V. Atre

Purpose The purpose of this paper is to investigate effects of layer thickness on densification, surface morphology, microstructure and mechanical and corrosion properties of 420 stainless steel fabricated by laser-powder bed fusion (L-PBF). Design/methodology/approach Standard specimens were printed at layer thickness of 10, 20 and 30 µm to characterize Archimedes density, surface roughness, tensile strength, elongation, hardness, microstructural phases and corrosion performance in the as-printed and heat-treated condition. Findings Archimedes density slightly increased from 7.67 ± 0.02 to 7.70 ± 0.02g/cm3 and notably decreased to 7.35 ± 0.05 g/cm3 as the layer thickness was changed from 20 µm to 10 and 30 µm, respectively. The sensitivity to layer thickness variation was also evident in properties, the ultimate tensile strength of as-printed parts increased from 1050 ± 25 MPa to 1130 ± 35 MPa and decreased to 760 ± 35 MPa, elongation increased from 2.5 ± 0.2% to 2.8 ± 0.3% and decreased to 1.5 ± 0.2, and hardness increased from 55 ± 1 HRC to 57 ± 1 HRC and decreased to 51 ± 1 HRC, respectively. Following heat treatment, the ultimate tensile strength and elongation improved but the general trends of effects of layer thickness remained the same. Practical implications Properties obtained by L-PBF are superior to reported properties of 420 stainless steel fabricated by metal injection molding and comparable to wrought properties. Originality/value This study successfully the sensitivity of mechanical and corrosion properties of the as-printed and heat-treated parts to not only physical density but also microstructure (martensite content and tempering), as a result of changing the layer thickness. This manuscript also demonstrates porosity evolution as a combination of reduced energy flux and lower packing density for parts processed at an increasing layer thickness.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3348
Author(s):  
Katia Artzt ◽  
Tatiana Mishurova ◽  
Peter-Philipp Bauer ◽  
Joachim Gussone ◽  
Pere Barriobero-Vila ◽  
...  

The contour scan strategies in laser powder bed fusion (LPBF) of Ti-6Al-4V were studied at the coupon level. These scan strategies determined the surface qualities and subsurface residual stresses. The correlations to these properties were identified for an optimization of the LPBF processing. The surface roughness and the residual stresses in build direction were linked: combining high laser power and high scan velocities with at least two contour lines substantially reduced the surface roughness, expressed by the arithmetic mean height, from values as high as 30 µm to 13 µm, while the residual stresses rose from ~340 to about 800 MPa. At this stress level, manufactured rocket fuel injector components evidenced macroscopic cracking. A scan strategy completing the contour region at 100 W and 1050 mm/s is recommended as a compromise between residual stresses (625 MPa) and surface quality (14.2 µm). The LPBF builds were monitored with an in-line twin-photodiode-based melt pool monitoring (MPM) system, which revealed a correlation between the intensity quotient I2/I1, the surface roughness, and the residual stresses. Thus, this MPM system can provide a predictive estimate of the surface quality of the samples and resulting residual stresses in the material generated during LPBF.


2020 ◽  
Vol 110 (11-12) ◽  
pp. 3339-3346
Author(s):  
L. Kaserer ◽  
S. Bergmueller ◽  
J. Braun ◽  
G. Leichtfried

Abstract Defects in parts processed by laser powder bed fusion (LPBF) are often triggered by laser/plasma plume interference and spattering. The implementation of a LPBF process in vacuum has been suggested to possibly reduce these effects. Within this study, the effects of process pressure variations between 1 mbar and atmospheric pressure on the generation of single tracks and on the surrounding layer of loose powder particles were studied for CP titanium grade 2 and the Maraging steel 1.2709. Below 10 mbar no single tracks could be generated and the powder layer adjacent to the track was effectively denuded. It was found that the essential mechanism for incorporating powder into the melt pool begins to work at process pressures above 10 mbar and its effectiveness increases with increasing pressure. The amount of powder incorporated into the melt pool depends on the material and the scanning conditions. With identical scanning conditions, this amount of powder is significantly larger for titanium than for steel. For process pressures above 200 mbar, no significant change in the amount of spattering could be found. In this pressure range improved process stability could be possible due to a reduced laser/plasma interaction and an increased laser penetration depth.


Sign in / Sign up

Export Citation Format

Share Document