Parametric modeling method for integrated design and manufacturing of radial compressor impeller

Author(s):  
Yu Zhou ◽  
Yue Song ◽  
Tong Xing ◽  
Yan Wang ◽  
Qi Zhang ◽  
...  
Energies ◽  
2017 ◽  
Vol 10 (3) ◽  
pp. 301 ◽  
Author(s):  
Baoshou Zhang ◽  
Baowei Song ◽  
Zhaoyong Mao ◽  
Wenlong Tian ◽  
Boyang Li ◽  
...  

2021 ◽  
Vol 11 (5) ◽  
pp. 2326
Author(s):  
Claudio Favi ◽  
Roberto Garziera ◽  
Federico Campi

Welding is a consolidated technology used to manufacture/assemble large products and structures. Currently, welding design issues are tackled downstream of the 3D modeling, lacking concurrent development of design and manufacturing engineering activities. This study aims to define a method to formalize welding knowledge that can be reused as a base for the development of an engineering design platform, applying design for assembly method to assure product manufacturability and welding operations (design for welding (DFW)). The method of ontology (rule-based system) is used to translate tacit knowledge into explicit knowledge, while geometrical feature recognition with parametric modeling is adopted to couple geometrical information with the identification of welding issues. Results show how, within the design phase, manufacturing issues related to the welding operations can be identified and fixed. Two metal structures (a jack adapter of a heavy-duty prop and a lateral frame of a bracket structure) fabricated with arc welding processes were used as case studies and the following benefits were highlighted: (i) anticipation of welding issues related to the product geometry and (ii) reduction of effort and time required for the design review. In conclusion, this research moves forward toward the direction of concurrent engineering, closing the gap between design and manufacturing.


Author(s):  
Alexander Hacks ◽  
Sebastian Schuster ◽  
Hans Josef Dohmen ◽  
Friedrich-Karl Benra ◽  
Dieter Brillert

The paper aims to give an overview over the keystones of design of the turbomachine for a supercritical CO2 (sCO2) Brayton cycle. The described turbomachine is developed as part of a demonstration cycle on a laboratory scale with a low through flow. Therefore, the turbomachine is small and operates at high rotational speed. To give an overview on the development, the paper is divided into two parts regarding the aerodynamic and mechanical design. The aerodynamic design includes a detailed description on the steps from choosing an appropriate rotational speed to the design of the compressor impeller. For setting the rotational speed, the expected high windage losses are evaluated considering the reachable efficiencies of the compressor. The final impeller design includes a description of the blading development together with the final geometry parameters and calculated performance. The mechanical analysis shows the important considerations for building a turbomachine with integrated design of the three major components: turbine, alternator, and compressor (TAC). It includes different manufacturing techniques of the impellers, the bearing strategy, the sealing components, and the cooling of the generator utilizing the compressor leakage. Concluding the final design of the TAC is shown and future work on the machine is introduced.


Author(s):  
Mukui Saxena ◽  
Rohinton K. Irani

Abstract This paper describes a new, and unique, system for design and analysis of a family of parts with a specific focus on gas turbine nozzles. The system, built on the tenets of knowledge-based engineering (KBE) within an object-oriented framework, supports the notion of scalable products that can be resized through reparametrization. The KBE system for the parametric design of nozzles has been integrated with a Topology and Geometry Utility System (TAGUS) and geometry-based mesh generators (QUADTREE and EXTREME) to develop a turnkey system. The resulting system is shown to help reduce the design cycle time and to increase engineering productivity by representing design and manufacturing information as part of the complete product definition.


2011 ◽  
Vol 109 ◽  
pp. 420-423
Author(s):  
Yan Kai Fang

Expansion joints are non-standard devices whose shape and parameters could vary with temperature, pressure, displacement and cycle life, so it's drawing work is very burdensome. Expansion joint industry is badly in need a set of accurate, reliable and stong practical professional graphics software. Therefore this paper carried out targeted secondary development of the software on the basis of digestion and absorption of SolidWorks2010 so as to meet the urgent needs of expansion joints industry. The structure of most parts of bellows expansion joints is not complex, and their geometry are relatively simple and fixed, so it is very suitable for parametric modeling method.


Sign in / Sign up

Export Citation Format

Share Document