Optimization of machining parameters using response surface methodology with desirability function in turning duplex stainless steel UNS S32760

Author(s):  
Luiz G. Cardoso ◽  
Deise S. Madeira ◽  
Thulio E. P. A. Ricomini ◽  
Rubén A. Miranda ◽  
Tarcísio G. Brito ◽  
...  
Author(s):  
Bikash Choudhuri ◽  
Ruma Sen ◽  
Subrata Kumar Ghosh ◽  
Subhash Chandra Saha

Wire electric discharge machining is a non-conventional machining wherein the quality and cost of machining are influenced by the process parameters. This investigation focuses on finding the optimal level of process parameters, which is for better surface finish, material removal rate and lower wire consumption for machining stainless steel-316 using the grey–fuzzy algorithm. Grey relational technique is applied to find the grey coefficient of each performance, and fuzzy evaluates the multiple performance characteristics index according to the grey relational coefficient of each response. Response surface methodology and the analysis of variance were used for modelling and analysis of responses to predict and find the influence of machining parameters and their proportion of contribution on the individual and overall responses. The measured values from confirmation experiments were compared with the predicted values, which indicate that the proposed models can be effectively used to predict the responses in the wire electrical discharge machining of AISI stainless steel-316. It is found that servo gap set voltage is the most influential factor for this particular steel followed by pulse off time, pulse on time and wire feed rate.


2021 ◽  
Vol 11 (15) ◽  
pp. 6768
Author(s):  
Tuan-Ho Le ◽  
Hyeonae Jang ◽  
Sangmun Shin

Response surface methodology (RSM) has been widely recognized as an essential estimation tool in many robust design studies investigating the second-order polynomial functional relationship between the responses of interest and their associated input variables. However, there is scope for improvement in the flexibility of estimation models and the accuracy of their results. Although many NN-based estimations and optimization approaches have been reported in the literature, a closed functional form is not readily available. To address this limitation, a maximum-likelihood estimation approach for an NN-based response function estimation (NRFE) is used to obtain the functional forms of the process mean and standard deviation. While the estimation results of most existing NN-based approaches depend primarily on their transfer functions, this approach often requires a screening procedure for various transfer functions. In this study, the proposed NRFE identifies a new screening procedure to obtain the best transfer function in an NN structure using a desirability function family while determining its associated weight parameters. A statistical simulation was performed to evaluate the efficiency of the proposed NRFE method. In this particular simulation, the proposed NRFE method provided significantly better results than conventional RSM. Finally, a numerical example is used for validating the proposed method.


2018 ◽  
Vol 49 (2) ◽  
pp. 62-81 ◽  
Author(s):  
Shailendra Kumar ◽  
Bhagat Singh

Tool chatter is an unavoidable phenomenon encountered in machining processes. Acquired raw chatter signals are contaminated with various types of ambient noises. Signal processing is an efficient technique to explore chatter as it eliminates unwanted background noise present in the raw signal. In this study, experimentally recorded raw chatter signals have been denoised using wavelet transform in order to eliminate the unwanted noise inclusions. Moreover, effect of machining parameters such as depth of cut ( d), feed rate ( f) and spindle speed ( N) on chatter severity and metal removal rate has been ascertained experimentally. Furthermore, in order to quantify the chatter severity, a new parameter called chatter index has been evaluated considering aforesaid denoised signals. A set of 15 experimental runs have been performed using Box–Behnken design of experiment. These experimental observations have been used to develop mathematical models for chatter index and metal removal rate considering response surface methodology. In order to check the statistical significance of control parameters, analysis of variance has been performed. Furthermore, more experiments are conducted and these results are compared with the theoretical ones in order to validate the developed response surface methodology model.


Sign in / Sign up

Export Citation Format

Share Document