scholarly journals Force model of freeform surface multi-axis machining with fillet end mill based on analytical contact analysis

Author(s):  
Minglong Guo ◽  
Zhaocheng Wei ◽  
Shiquan Li ◽  
Minjie Wang ◽  
Hang Gao ◽  
...  
2021 ◽  
Author(s):  
Minglong Guo ◽  
Zhaocheng Wei ◽  
Shiquan Li ◽  
Minjie Wang ◽  
Hang Gao ◽  
...  

Abstract In the multi-axis machining of freeform surface, compared with ball end mill, the fillet end mill has higher machining efficiency under the same residual height and has been widely used. As the most important physical quantity in machining process, milling force has always been the focus of research. In this paper, the geometry contact between fillet end mill and freeform surface is analyzed by analytical method, and then the milling force prediction model of multi-axis machining is established. Based on differential discretization, the cutter location of multi-axis machining of freeform surface is approximate to multi-axis machining of oblique plane, which simplifies the research object. The inclination angle is defined to describe the relationship among cutter axis, feed and workpiece in cutter coordinate system. The space range of the cutting edge element participating in material cutting is constructed by the swept surface of previous tool path, the to-be machined surface and the feed direction surface, and the in cut cutting edge is determined by judging the cutting edge element one by one. Considering cutter run-out, the element cutting forces on the cylindrical and fillet surfaces of the fillet end mill are derived, and all the element forces within in cut cutting edge are summed by vector to obtain the overall milling force of fillet end mill. Simulation results show that, compared with the solid method, this contact analysis method between cutter and workpiece can take both efficiency and accuracy into account. In the machining experiment, the measured force and predicted force along tool path are consistent in trend and amplitude, which verifies the effectiveness of the milling force prediction model.


2021 ◽  
Vol 143 (9) ◽  
Author(s):  
Minglong Guo ◽  
Zhaocheng Wei ◽  
Minjie Wang ◽  
Jia Wang ◽  
Shengxian Liu

Abstract The core parts with the characteristic of freeform surface are widely used in the major equipment of various fields. Cutting force is the most important physical quantity in the five-axis CNC machining process of core parts. Not only in micro-milling, but also in macro-milling, there is also an obvious size effect, especially in medium- and high-speed milling, which is frequently ignored. In this paper, the milling force prediction model for five-axis machining of a freeform surface with a ball-end mill considering the mesoscopic size effect is established. Based on the characteristics of cutting thickness in macro-milling, a new dislocation density correction form is proposed, and a new experiment is designed to identify the dislocation density correction coefficient. Therefore, the shear stress calculated in this paper not only reflects the cutting dynamic mechanical characteristics but also considers the mesoscopic size effect. A linear function is proposed to describe the relationship between friction coefficient and cutting speed, cutter rake angle, and cutting thickness. Considering cutter run-out, the micro-element cutting force in the shear zone and plough zone are analyzed. The cutting geometry contact between the freeform surface and the ball-end mill is analyzed analytically by the space limitation method. Finally, the total milling force is obtained by summing all the force vectors of cutting edge micro-elements within the in-cut cutting edge. In the five-axis machining experiment of freeform surface, the theoretically predicted results of milling forces are in good agreement with the measured results in trend and amplitude.


2018 ◽  
Author(s):  
Isamu Nishida ◽  
Takaya Nakamura ◽  
Ryuta Sato ◽  
Keiichi Shirase

A new method, which accurately predicts cutting force in ball end milling considering cutting edge around center web, has been proposed. The new method accurately calculates the uncut chip thickness, which is required to estimate the cutting force by the instantaneous rigid force model. In the instantaneous rigid force model, the uncut chip thickness is generally calculated on the cutting edge in each minute disk element piled up along the tool axis. However, the orientation of tool cutting edge of ball end mill is different from that of square end mill. Therefore, for the ball end mill, the uncut chip thickness cannot be calculated accurately in the minute disk element, especially around the center web. Then, this study proposes a method to calculate the uncut chip thickness along the vector connecting the center of the ball and the cutting edge. The proposed method can reduce the estimation error of the uncut chip thickness especially around the center web compared with the previous method. Our study also realizes to calculate the uncut chip thickness discretely by using voxel model and detecting the removal voxels in each minute tool rotation angle, in which the relative relationship between a cutting edge and a workpiece, which changes dynamically during tool rotation. A cutting experiment with the ball end mill was conducted in order to validate the proposed method. The results showed that the error between the measured and predicted cutting forces can be reduced by the proposed method compared with the previous method.


2015 ◽  
Vol 3 (3) ◽  
Author(s):  
Chi Xu ◽  
James Zhu ◽  
Shiv G. Kapoor

This paper presents a five-axis ball-end milling force model that is specifically tailored to microscale machining. A composite cutting force is generated by combining two force contributions from a shearing/ploughing slip-line (SL) field model and a quasi-static indentation (ID) model. To fully capture the features of microscale five-axis machining, a unique chip thickness algorithm based on the velocity kinematics of a ball-end mill is proposed. This formulation captures intricate tool trajectories as well as readily allows the integration of runout and elastic recovery effects. A workpiece updating algorithm has also been developed to identify tool–workpiece engagement. As a dual purpose, historical elastic recovery is stored locally on the meshed workpiece surface in vector form so that the directionality of elastic recovery is preserved for future time increments. The model has been validated through a comparison with five-axis end mill force data. Simulation results show reasonably accurate replication of end milling cutting forces with minimal experimental data fitting.


2012 ◽  
Vol 163 ◽  
pp. 95-99 ◽  
Author(s):  
Qiong Wu ◽  
Yi Du Zhang ◽  
Xiang Sheng Gao ◽  
Lin Fang

Tool deflection is one of the important influencing factors for surface roughness and surface integrity of work piece in cutting process. The excessive deflection even causes seriously defects of work piece or failures of tool. This paper gives theory analysis and mathematic method to predict the tool deflection by means of the cantilever beam deflection theory. Based on modeling of 3-dimmsion milling force model, the finite element analysis has been performed for calculation of tool deflection. The experiment of tool deflection of solid end mill is performed to compare simulation and theory. Results show the correction and reliability of research method. It lays a foundation for fast calculation of tool deflection and optimization of milling parameters.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Yu Guo ◽  
Bin Lin ◽  
Weiqiang Wang

The paper presents a mechanistic cutting force model of serrated end mill to predict cutting forces. Geometric model of serrated end mill is established, which covers variable helix end mill geometries. In this model, the serration of helical cutting flutes is expressed spatially and the wave of serration is defined to be a sine wave. The spatial vector is applied to define chip thickness so as to enhance the spatial expressiveness of the model, which is perpendicular to the curvature of each flute. Each helical flute is scatted into a series of infinitesimal cutting edges. The infinitesimal cutting forces depend on three cutting force coefficients and three edge force coefficients in the tangential, radial, and axial directions at every cutting element. By integrating the infinitesimal cutting forces along each cutting edge, the milling forces with serrated end mill can be predicted. The model feasibility of the serrated end mill is verified by comparing the predicted and measured cutting forces. Moreover, the model is also verified such that it can also predict cutting forces with other types of end mills, such as variable helix serrated end mill, variable helix end mill, and regular end mill.


2006 ◽  
Vol 110 ◽  
pp. 151-162 ◽  
Author(s):  
Daisuke Suzuki ◽  
Shigeru Horiuchi ◽  
Jin Hwan Choi ◽  
Han Sik Ryu

The prime source of vibration and noise in a gear system is originated from transmission error between the meshing gears. In this paper, the dynamic modeling method and response of a spur gear pair for the efficient system simulation are investigated by using a detailed contact analysis at each time step. Input values such as time-varying mesh stiffness and static transmission error excitation are not required in this investigation because mesh forces are obtained by contact analysis directly. The efficient contact search kinematics and algorithms in the context of the compliant contact model are developed to detect the interactions between teeth surfaces. In this investigation the compliant force model based on the Herzian law is employed using Coulomb friction force model, and dynamic transmission error (DTE) and mesh frequency values of contacting gear system are also illustrated.


Author(s):  
J.-J. Junz Wang ◽  
C. M. Zheng

For a generalized helical end mill, this paper presents a frequency domain force model considering the ploughing as well as the shearing mechanisms. The differential chip load and the corresponding cutting forces are first formulated through differential geometry for a general helical cutting edge. The differential cutting force is assumed to be a linear function of the chip load with a proportional shearing force and a constant ploughing force. The total milling force in the angle domain is subsequently composed through convolution integration and analyzed by Fourier analysis. The frequency domain model has the parameters of a general milling process all integrated in a single framework with their roles clearly defined so that Fourier coefficients of the milling force can be obtained for any analytically definable helical cutter. Applications are illustrated for three common helical cutters: the cylindrical, taper, and ball end mills. Furthermore, as an inverse application, a linear algebraic equation is formulated for the identification of six cutting constants from the average forces of two slot milling tests. Demonstration and verification of the milling force model as well as the identification of cutting constants are carried out through experiments with three types of milling cutters.


2012 ◽  
Vol 500 ◽  
pp. 550-555
Author(s):  
Qing Shan Liu ◽  
Guang Yu Tan ◽  
Guang Jun Liu ◽  
Yan Li Su ◽  
Guang Hui Li

This work aims to investigate parameterized modeling and a different mode of loading with finite element analysis for flat end mill. A loading mode is chosen according to the cutting force model of overall end mills. Normal and shear stresses which calculate from the cutting force experiments are loaded on the rack face of flat end mill. The stress distribution of end mill in high-speed cutting is obtained by finite element analysis. It is shown that the maximum stress is located at major flank face near the tool tip, rather than the nose of tool and the chisel edge. It shows the tool breakage mechanism in the local region. In the end, we compared the finite element analysis results with the experiment ones. It indicates that the analysis results agree well with the experimental data. Therefore, the proposed loading mode is available.


Sign in / Sign up

Export Citation Format

Share Document