scholarly journals Wire arc additive manufacturing of AA5183 with TiC nanoparticles

Author(s):  
Geir Langelandsvik ◽  
Magnus Eriksson ◽  
Odd M. Akselsen ◽  
Hans J. Roven

AbstractAluminium alloys processed by wire arc additive manufacturing (WAAM) exhibit a relatively coarse microstructure with a columnar morphology. A powerful measure to refine the microstructure and to enhance mechanical properties is to promote grain refinement during solidification. Addition of ceramic nanoparticles has shown great potential as grain refiner and strengthening phase in aluminium alloys. Thus, an Al-Mg alloy mixed with TiC nanoparticles was manufactured by the novel metal screw extrusion method to a wire and subsequently deposited by WAAM. Measures to restrict oxidation of magnesium during metal screw extrusion were examined. Purging of CO2 gas into the extrusion chamber resulted in a remarkable reduction in formation of MgO and Mg(OH)2. TiC decomposed to Al3Ti during WAAM deposition, leading to a significant grain refinement of 93% compared to a commercial benchmark. The presence of remaining TiC nanoparticles accounted for an increased hardness of the WAAM material through thermal expansion mismatch strengthening and Orowan strengthening. Exposure of TiC to moisture in air during metal screw extrusion increased the internal hydrogen content significantly, and a highly porous structure was seen after WAAM deposition.

2009 ◽  
Vol 630 ◽  
pp. 213-221 ◽  
Author(s):  
Mark Easton ◽  
David H. StJohn ◽  
Lisa Sweet

Grain refinement and hot tearing are important key factors affecting the quality of castings. There have been substantial advances in the understanding of both of these phenomena over the last two decades. The paper discusses strategies for obtaining the lowest cost grain refiner addition and provides an explanation for how the refinement of equiaxed grains leads to a reduction in hot tear susceptibility. However, it also provides a warning that adding more grain refiner may not be better for reducing hot tear susceptibility. Alloy factors affecting hot tearing are also discussed. Finally, a list of six key considerations is provided to help casthouse and foundry engineers when trying to optimise grain refinement and reduce hot tearing.


2021 ◽  
Vol 69 ◽  
pp. 378-390
Author(s):  
Tobias Hauser ◽  
Raven T. Reisch ◽  
Stefan Seebauer ◽  
Aashirwad Parasar ◽  
Tobias Kamps ◽  
...  

2021 ◽  
pp. 162735
Author(s):  
J.R. Kennedy ◽  
A.E Davis ◽  
A.E. Caballero ◽  
N. Byres ◽  
S. Williams ◽  
...  

Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1485
Author(s):  
Geir Langelandsvik ◽  
Mathieu Grandcolas ◽  
Kristian G. Skorpen ◽  
Trond Furu ◽  
Odd M. Akselsen ◽  
...  

The development of customised aluminium alloys for welding and additive manufacturing (AM) is proposed to solve several quality issues and to enhance the mechanical integrity of components. The introduction of ceramic grain refining agents shows great potential as alloy addition as to limit cracking susceptibility and increase the strength. Thus, a versatile solid-state manufacturing route for nanoparticle reinforced aluminium wires has been developed based on the metal screw extrusion principle. In fact, the Al-Si alloy AA4043 mixed with 1 wt.% TiC nanoparticles has been manufactured as a wire. The accumulated strain on the material during metal screw extrusion has been estimated, classifying the process as a severe plastic deformation (SPD) method. A chemical reaction between silicon and TiC particles after metal screw extrusion was found, possibly limiting the grain refining effect. Electric arc bead-on-plate deposition was performed with metal screw extruded and commercial material. The addition of TiC induced a grain morphology transition from columnar to equiaxed after electric arc deposition, and increased the hardness. A high amount of porosity was found in the AA4043-TiC material, probably arising from hydrogen contamination on TiC surfaces prior to metal screw extrusion. The results are encouraging as a new direction for aluminium alloy development for additive manufacturing.


2021 ◽  
pp. 101993
Author(s):  
Tobias Hauser ◽  
Raven T. Reisch ◽  
Philipp P. Breese ◽  
Benjamin S. Lutz ◽  
Matteo Pantano ◽  
...  

2015 ◽  
Vol 816 ◽  
pp. 459-464
Author(s):  
Guang Zong Wang ◽  
Da Quan Li ◽  
Qiang Zhu

In this paper the physical and chemical grain refining of the Mg-10Sm alloy was investigated. Physical grain refinement was achieved by strongly shearing the melt above the liquidus temperature using a twin-screw string device and then cast at the near liquidus temperature. Chemical grain refiner was added into Zr master alloy in the melt. Casting the Mg-10Sm alloy at 730°C produced an extremely coarse microstructure consisting of huge dendritic grains. The physical grain refinement greatly refined the dendritic grains to smaller rosette grains, being reduced from several millimeters to about 200μm. Chemical grain refinement produced fine and equiaxed grain structure with size of approximated 111μm. Combination of the physical and chemical grain refinement creates more significant refining effect than either of the two methods.


Sign in / Sign up

Export Citation Format

Share Document