Bottom surface smoothing of high aspect ratio hole by guiding large-area electron beam with magnet

Author(s):  
Togo Shinonaga ◽  
Jiayu Lu ◽  
Mitsuhiro Kimura ◽  
Motohiro Inoue ◽  
Akira Okada
2021 ◽  
Author(s):  
Eun Seop Yoon ◽  
Bong Gill Choi ◽  
Hwan-Jin Jeon

Abstract The development of energy storage electrode materials is important for enhancing the electrochemical performance of supercapacitors. Despite extensive research on improving electrochemical performance with polymer-based materials, electrode materials with micro/nanostructures are needed for fast and efficient ion and electron transfer. In this work, highly ordered phosphomolybdate (PMoO)-grafted polyaniline (PMoO-PAI) deposited onto Au hole-cylinder nanopillar arrays is developed for high-performance pseudocapacitors. The three-dimensional nanostructured arrays are easily fabricated by secondary sputtering lithography, which has recently gained attention and features a high resolution of 10 nm, a high aspect ratio greater than 20, excellent uniformity/accuracy/precision, and compatibility with large area substrates. These 10nm scale Au nanostructures with a high aspect ratio of ~30 on Au substrates facilitate efficient ion and electron transfer. The resultant PMoO-PAI electrode exhibits outstanding electrochemical performance, including a high specific capacitance of 114 mF/cm2, a high-rate capability of 88%, and excellent long-term stability.


2007 ◽  
Vol 140 (2) ◽  
pp. 185-193 ◽  
Author(s):  
J.H. Daniel ◽  
A. Sawant ◽  
M. Teepe ◽  
C. Shih ◽  
R.A. Street ◽  
...  

2005 ◽  
Vol 872 ◽  
Author(s):  
J. R. Huang ◽  
B. Bai ◽  
J. Shaw ◽  
T. N. Jackson ◽  
C. Y. Wei ◽  
...  

AbstractThis paper presents a novel method to create and integrate micro-machined devices and high aspect-ratio (height-to-width ratio) microstructures in which the microstructures are built up using multiple layers of photopolymer film and/or viscous solution. Very high aspect-ratio 2-and 3-dimensional (2-D and 3-D) microstructures were constructed by stacking photo-imageable polymer films. Such films may be dry films applied by lamination or solution layers applied by bar coating, or doctor blade coating. Photolithography is used in both cases to define the microstructure. This additive process of thin-film micromachining facilitates high aspect-ratio microstructure fabrication. We have demonstrated structures of up to 12-layers comprising 2-D arrays of deep trenches (180 μm deep and 25 μm wide) and a 2-layer SU-8 micro-trench array with an aspect ratio up to 36 on glass substrates. Miniaturized structures of interconnected reservoirs as small as 50 μm × 50 μm × 15 μm (∼38 pico liter storage capacity) are also being fabricated, along with a novel 5-layer microfluidic channel array and a vacuum-infiltration process for fluid manipulation. This method has the potential to create functional large-area micro-devices at low-cost and with increased device flexibility, durability, prototyping speed, and reduced process complexity for applications in optoelectronics, integrated detectors, and bio-devices. The novel multi-layer photopolymer dry film and solution process also allows microstructures in micro-electro-mechanical systems (MEMS) to be built with ease and provides the functionality of MEMS integration with electronic devices and integrated circuits (ICs).


2003 ◽  
Vol 42 (Part 1, No. 6B) ◽  
pp. 4051-4053 ◽  
Author(s):  
Hideaki Hasegawa ◽  
Hidenori Mimura ◽  
Kuniyoshi Yokoo

Sign in / Sign up

Export Citation Format

Share Document