scholarly journals Toward digital validation for rapid product development based on digital twin: a framework

Author(s):  
Sihan Huang ◽  
Guoxin Wang ◽  
Dong Lei ◽  
Yan Yan

AbstractProduct development should cover product design, validation, and manufacturing. In traditional product development, physical validation based on physical trial manufacturing is the key step to confirm the design scheme before physical manufacturing. However, physical validation is costly and inefficient, which could be the main obstacle to achieving rapid product development. The emergence of digital twin provides an opportunity to accelerate product development by eliminating physical validation toward digital validation in the smart manufacturing era. Therefore, a framework of rapid product development based on digital twin is proposed in this paper. During product development, the new product is designed according to the new requirements in the virtual space, in which the existing digital twins of products can be referenced. Then, an ultrahigh-fidelity virtual manufacturing system is constructed for digital trial manufacturing based on the digital twin of the manufacturing system and the design scheme of the new product. An ultrahigh-fidelity digital prototype can be obtained from digital trial manufacturing for digital validation. The new product validation is executed on the digital prototype to test its performance. The digital validation results can be used to improve the design scheme of the new product and boost the corresponding manufacturing processes. In addition, the core characteristics and key technologies of rapid product development based on digital twin are discussed. Finally, a case study is presented to implement the proposed framework and to show the effectiveness of accelerating product development.

Author(s):  
Wesley Ellgass ◽  
Nathan Holt ◽  
Hector Saldana-Lemus ◽  
Julian Richmond ◽  
Ali Vatankhah Barenji ◽  
...  

With the developments and applications of the advanced information technologies such as cloud computing, internet of thing, artificial intelligence and virtual reality, industry 4.0 and smart manufacturing era are coming. In this respect, one of the specific challenges is to achieve a connection of physical resources on the shop floor with virtual resources, for real-time response, real time process optimization, and simulation, which is merged by big data problem. In this respect, Digital Twins (DT) concept is introduced as a key technology, which includes physical resources, virtual resources, service system, and digital twin data. DT considers current condition of physical resource and prediction of future events to make a responsive decision. However, due to the complexity of building a digital equivalent in virtual space to its physical counterpart, very little applications have been developed with this purpose, especially in the industrial manufacturing area. Therefore, the types of data and technology required to build the DT for a manufacturing system are presented in this work, trying to develop a framework of DT based manufacturing system, which is supported by the virtual reality for virtualization of physical resources.


2020 ◽  
Vol 306 ◽  
pp. 02005
Author(s):  
Jin Cao ◽  
Junliang Wang ◽  
Junqing Lu

Compressor is a typical high-end discrete product,with the shortening of product life cycle and the enhancement of the degree of product customization, the traditional compressor manufacturing system architecture cannot meet the requirements of comprehensive digital management of compressor from body scheme design to parts production line, logistics management, operation and maintenance monitoring and evaluation. This paper presents a compressor manufacturing system architecture based on digital twinning, and establishes an Internet platform for compressor industry oriented to remote coordination from three aspects of compressor design, production, operation and maintenance. The platform includes industrial Internet infrastructure layer, physical space entity model layer, virtual space multidimensional model layer, physical space and virtual space multidimensional model correlation and mapping layer, big data intelligent analysis decision-making layer, and digital twin application layer. Through the establishment of the compressor product design and simulation model of digital twin, compressor production process digital twin model, compressor fault diagnosis and remote operations digital twin model, implementation is based on the number of compressor collaboration in manufacturing industrial Internet platform twin system, leading the transformation and upgrading of intelligent manufacturing industry, compressor industry sustainable development ability and international competitiveness.


Author(s):  
Jeffrey W. Herrmann ◽  
Mandar M. Chincholkar

Abstract This paper describes a decision support tool that can help a product development team reduce manufacturing cycle time during product design. This design for production (DFP) tool determines how manufacturing a new product design affects the performance of the manufacturing system by analyzing the capacity requirements and estimating the manufacturing cycle times. Performing these tasks early in the product development process can reduce product development time. The paper presents a comprehensive DFP approach and describes the components of the DFP tool, which gives feedback that can be used to eliminate manufacturing cycle time problems. We present an example that illustrates the tool’s functionality.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 121507-121521
Author(s):  
Linli Li ◽  
Fu Gu ◽  
Hao Li ◽  
Jianfeng Guo ◽  
Xinjian Gu

2018 ◽  
Vol 5 (1) ◽  
pp. 25-49
Author(s):  
Jordan Verrollot ◽  
Arto Tolonen ◽  
Janne Harkonen ◽  
Harri J. O. Haapasalo

This article describes how new product development (NPD) is critical to maintaining a strong market position. However, full-scale NPD may consume too much time and resources when necessary to react quickly to customer needs or emerging business opportunities. Rapid development (RaDe) is a type of incremental product development complementing the organizations' existing NPD process. In RaDe, new sales items are created by redesigning or upgrading existing products inexpensively, and in a timely manner. This article aims at clarifying the challenges and enablers relating to RaDe implementation in four case companies and by the means of reviewing literature. The identified challenges include the difficulty of differentiating between product developments models, the lack of clear definition for RaDe and issues in product data management. The enablers include structuring and managing projects differently compared to NPD, the utilization of existing supply-chain capabilities and the designed products fitting the current business processes to enable rapid product ramp-ups.


Machines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 2
Author(s):  
Menglei Zheng ◽  
Ling Tian

With the development of information and communication technology, massive amounts of data are generated during the entire lifecycle of mechanical products. However, their isolated and fragmented state hinders further empowerment of smart manufacturing. Digital twins have attracted considerable attention as they enable a user to rebuild all elements of a physical entity in a virtual space, targeted at the effective fusion of data from multiple sources with different formats, while its modeling method still needs further research. In this context, we propose a native, full-element digital twin modeling method for mechanical products. This ontology-based method establishes a unified and computer-understandable model framework for mechanical products by abstracting the essential content and relationships of data and by storing them in a graph database efficiently. The developed model could serve as a data center for the entire lifecycle of the product or could be combined with existing data management systems, integrating the previously isolated, fragmented, and scattered data on various platforms. In addition, the model utilizes the structural characteristics of mechanical products and is developed as a hierarchical digital mapping to better meet the application requirements. Finally, a case study of a helicopter digital twin is presented to verify the proposed method.


2019 ◽  
Vol 16 (5) ◽  
pp. 172988141988066
Author(s):  
Xuqian Zhang ◽  
Wenhua Zhu

In the wake of the continuous deepening of the application of new generation information technology in the manufacturing field, digital twin, as a most new active factors for smart manufacturing, has become a new research hot spot. Based on such a background, the article proposes a novel application framework of digital twin-driven product smart manufacturing system and analyzes its operation mechanism. Key enabling technologies such as digital twin mapping technology with manufacturing entity, twinning of cyber and physical manufacturing system, as well as twining data-driven machining parameter optimization are also illustrated in detail. Finally, a case of the aeroengine fan blade manufacturing is given to demonstrate the feasibility and effectiveness of the implementation method mentioned above. Meanwhile, potential industrial applications and limitations are discussed as well to provide valuable insights to aeroengine blade manufacturers.


Sign in / Sign up

Export Citation Format

Share Document