Penalized spline estimation for panel count data model with time-varying coefficients

Author(s):  
Fei Qin ◽  
Zhangsheng Yu
PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261224
Author(s):  
Yijun Wang ◽  
Weiwei Wang

Panel count data frequently occurs in follow-up studies, such as medical research, social sciences, reliability studies, and tumorigenicity experiences. This type data has been extensively studied by various statistical models with time-invariant regression coefficients. However, the assumption of invariant coefficients may be violated in some reality, and the temporal covariate effects would be of great interest in research studies. This motivates us to consider a more flexible time-varying coefficient model. For statistical inference of the unknown functions, the quantile regression approach based on the B-spline approximation is developed. Asymptotic results on the convergence of the estimators are provided. Some simulation studies are presented to assess the finite-sample performance of the estimators. Finally, two applications of bladder cancer data and US flight delay data are analyzed by the proposed method.


2021 ◽  
Vol 3 (1) ◽  
pp. 1-13
Author(s):  
Muhammad Anus Hayat Khan ◽  
Ijaz Hussain

Each year more than three thousand people die and get serious injuries in traffic accidents. Count data model provide more precise tools for planners and decision makers to conduct proactive road safety planning.We analyzed the exploratory research of Road Traffic Accidents (RTAs) and furthermore explores the factors affecting the RTAs frequency in 36 districts of the Punjab over a time period of three years (July 1, 2013 June 30, 2016) with monthly data using panel count data models. Among the models considered, the random parameters Poisson panel count data model is found to fit the data best. The exploratory analysis shows that highly dense populated districts with large number of registered vehicles causes more accidents as compared to low density populated districts. It is found that, most of the variables used to control the variation in the frequency of RTAs counts play vital role with higher significance levels. The application of regression analysis and modeling of RTAs at district level in Punjab will help to identification of districts with high RTAs rates and this could help more efficient road safety management in the Punjab.


Eng ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 99-125
Author(s):  
Edward W. Kamen

A transform approach based on a variable initial time (VIT) formulation is developed for discrete-time signals and linear time-varying discrete-time systems or digital filters. The VIT transform is a formal power series in z−1, which converts functions given by linear time-varying difference equations into left polynomial fractions with variable coefficients, and with initial conditions incorporated into the framework. It is shown that the transform satisfies a number of properties that are analogous to those of the ordinary z-transform, and that it is possible to do scaling of z−i by time functions, which results in left-fraction forms for the transform of a large class of functions including sinusoids with general time-varying amplitudes and frequencies. Using the extended right Euclidean algorithm in a skew polynomial ring with time-varying coefficients, it is shown that a sum of left polynomial fractions can be written as a single fraction, which results in linear time-varying recursions for the inverse transform of the combined fraction. The extraction of a first-order term from a given polynomial fraction is carried out in terms of the evaluation of zi at time functions. In the application to linear time-varying systems, it is proved that the VIT transform of the system output is equal to the product of the VIT transform of the input and the VIT transform of the unit-pulse response function. For systems given by a time-varying moving average or an autoregressive model, the transform framework is used to determine the steady-state output response resulting from various signal inputs such as the step and cosine functions.


Sign in / Sign up

Export Citation Format

Share Document