A priori fully populated covariance matrices in least-squares adjustment—case study: GPS relative positioning

2016 ◽  
Vol 91 (5) ◽  
pp. 465-484 ◽  
Author(s):  
Gaël Kermarrec ◽  
Steffen Schön
2021 ◽  
Vol 87 (10) ◽  
pp. 717-733 ◽  
Author(s):  
Radhika Ravi ◽  
Ayman Habib

This article proposes a solution to special least squares adjustment (LSA) models with a rank-deficient weight matrix, which are commonly encountered in geomatics. The two sources of rank deficiency in weight matrices are discussed: naturally occurring due to the inherent characteristics of LSA mathematical models and artificially induced to eliminate nuisance parameters from LSA estimation. The physical interpretation of the sources of rank deficiency is demonstrated using a case study to solve the problem of 3D line fitting, which is often encountered in geomatics but has not been addressed fully to date. Finally, some geomatics-related applications—mobile lidar system calibration, point cloud registration, and single-photo resection—are discussed along with respective experimental results, to emphasize the need to assess LSA models and their weight matrices to draw inferences regarding the effective contribution of observations. The discussion and results demonstrate the vast applications of this research in geomatics as well as other engineering domains.


1974 ◽  
Vol 28 (5) ◽  
pp. 670-671
Author(s):  
Georges Blaha

This work (condensed report of the same title and by the same author), although applicable to a number of least squares adjustment problems, was inspired by adjustments of two-dimensional geodetic networks. Such adjustments are carried out separately for different orders and in general the coordinates of the points belonging to a higher order are kept unchanged for obvious practical reasons. However, should the uncertainty of the “fixed” parameters be neglected in the variance-covariance propagation, the outcome of an adjustment would be too optimistic and without any real meaning. The main task of this study is to correct the variance-covariance matrices for the contribution of this uncertainty considering the “General Least Squares Method” with weighted, unknown, or some weighted and some unknown parameters. Such an approach represents a generalization of the treatment described in the reference paper in a sense that it allows for the inclusion of completely unknown parameters in the mathematical model.


2017 ◽  
Author(s):  
Bashar Alsadik

An application is presented in this paper to an important technique of least square (LS) adjustment using the unified approach. The unified approach is considering the contribution of weights to unknown parameters in a Geomatics model similar to observations. Accordingly, the adjusted parameters are governed by their assigned a priori weights which is normally based on the instrument limitations and manufacturers specifications. The aim of this paper, is to spot the light on such advanced LS techniques which is suitable nowadays to handle the wealth of observations collected from modern sensors and navigation systems embedded in the modern mapping systems.


2021 ◽  
Vol 5 (1) ◽  
pp. 59
Author(s):  
Gaël Kermarrec ◽  
Niklas Schild ◽  
Jan Hartmann

Terrestrial laser scanners (TLS) capture a large number of 3D points rapidly, with high precision and spatial resolution. These scanners are used for applications as diverse as modeling architectural or engineering structures, but also high-resolution mapping of terrain. The noise of the observations cannot be assumed to be strictly corresponding to white noise: besides being heteroscedastic, correlations between observations are likely to appear due to the high scanning rate. Unfortunately, if the variance can sometimes be modeled based on physical or empirical considerations, the latter are more often neglected. Trustworthy knowledge is, however, mandatory to avoid the overestimation of the precision of the point cloud and, potentially, the non-detection of deformation between scans recorded at different epochs using statistical testing strategies. The TLS point clouds can be approximated with parametric surfaces, such as planes, using the Gauss–Helmert model, or the newly introduced T-splines surfaces. In both cases, the goal is to minimize the squared distance between the observations and the approximated surfaces in order to estimate parameters, such as normal vector or control points. In this contribution, we will show how the residuals of the surface approximation can be used to derive the correlation structure of the noise of the observations. We will estimate the correlation parameters using the Whittle maximum likelihood and use comparable simulations and real data to validate our methodology. Using the least-squares adjustment as a “filter of the geometry” paves the way for the determination of a correlation model for many sensors recording 3D point clouds.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Camilo Broc ◽  
Therese Truong ◽  
Benoit Liquet

Abstract Background The increasing number of genome-wide association studies (GWAS) has revealed several loci that are associated to multiple distinct phenotypes, suggesting the existence of pleiotropic effects. Highlighting these cross-phenotype genetic associations could help to identify and understand common biological mechanisms underlying some diseases. Common approaches test the association between genetic variants and multiple traits at the SNP level. In this paper, we propose a novel gene- and a pathway-level approach in the case where several independent GWAS on independent traits are available. The method is based on a generalization of the sparse group Partial Least Squares (sgPLS) to take into account groups of variables, and a Lasso penalization that links all independent data sets. This method, called joint-sgPLS, is able to convincingly detect signal at the variable level and at the group level. Results Our method has the advantage to propose a global readable model while coping with the architecture of data. It can outperform traditional methods and provides a wider insight in terms of a priori information. We compared the performance of the proposed method to other benchmark methods on simulated data and gave an example of application on real data with the aim to highlight common susceptibility variants to breast and thyroid cancers. Conclusion The joint-sgPLS shows interesting properties for detecting a signal. As an extension of the PLS, the method is suited for data with a large number of variables. The choice of Lasso penalization copes with architectures of groups of variables and observations sets. Furthermore, although the method has been applied to a genetic study, its formulation is adapted to any data with high number of variables and an exposed a priori architecture in other application fields.


1968 ◽  
Vol 22 (5) ◽  
pp. 22
Author(s):  
Irving H. Siegel

2010 ◽  
Vol 2010 ◽  
pp. 1-14 ◽  
Author(s):  
Mohammad Ali Badamchizadeh ◽  
Iraj Hassanzadeh ◽  
Mehdi Abedinpour Fallah

Robust nonlinear control of flexible-joint robots requires that the link position, velocity, acceleration, and jerk be available. In this paper, we derive the dynamic model of a nonlinear flexible-joint robot based on the governing Euler-Lagrange equations and propose extended and unscented Kalman filters to estimate the link acceleration and jerk from position and velocity measurements. Both observers are designed for the same model and run with the same covariance matrices under the same initial conditions. A five-bar linkage robot with revolute flexible joints is considered as a case study. Simulation results verify the effectiveness of the proposed filters.


Geophysics ◽  
2007 ◽  
Vol 72 (1) ◽  
pp. F25-F34 ◽  
Author(s):  
Benoit Tournerie ◽  
Michel Chouteau ◽  
Denis Marcotte

We present and test a new method to correct for the static shift affecting magnetotelluric (MT) apparent resistivity sounding curves. We use geostatistical analysis of apparent resistivity and phase data for selected periods. For each period, we first estimate and model the experimental variograms and cross variogram between phase and apparent resistivity. We then use the geostatistical model to estimate, by cokriging, the corrected apparent resistivities using the measured phases and apparent resistivities. The static shift factor is obtained as the difference between the logarithm of the corrected and measured apparent resistivities. We retain as final static shift estimates the ones for the period displaying the best correlation with the estimates at all periods. We present a 3D synthetic case study showing that the static shift is retrieved quite precisely when the static shift factors are uniformly distributed around zero. If the static shift distribution has a nonzero mean, we obtained best results when an apparent resistivity data subset can be identified a priori as unaffected by static shift and cokriging is done using only this subset. The method has been successfully tested on the synthetic COPROD-2S2 2D MT data set and on a 3D-survey data set from Las Cañadas Caldera (Tenerife, Canary Islands) severely affected by static shift.


Sign in / Sign up

Export Citation Format

Share Document