scholarly journals Unified Approach of Least Squares Adjustment – an Application in 3D Geomatics

2017 ◽  
Author(s):  
Bashar Alsadik

An application is presented in this paper to an important technique of least square (LS) adjustment using the unified approach. The unified approach is considering the contribution of weights to unknown parameters in a Geomatics model similar to observations. Accordingly, the adjusted parameters are governed by their assigned a priori weights which is normally based on the instrument limitations and manufacturers specifications. The aim of this paper, is to spot the light on such advanced LS techniques which is suitable nowadays to handle the wealth of observations collected from modern sensors and navigation systems embedded in the modern mapping systems.

1974 ◽  
Vol 28 (5) ◽  
pp. 670-671
Author(s):  
Georges Blaha

This work (condensed report of the same title and by the same author), although applicable to a number of least squares adjustment problems, was inspired by adjustments of two-dimensional geodetic networks. Such adjustments are carried out separately for different orders and in general the coordinates of the points belonging to a higher order are kept unchanged for obvious practical reasons. However, should the uncertainty of the “fixed” parameters be neglected in the variance-covariance propagation, the outcome of an adjustment would be too optimistic and without any real meaning. The main task of this study is to correct the variance-covariance matrices for the contribution of this uncertainty considering the “General Least Squares Method” with weighted, unknown, or some weighted and some unknown parameters. Such an approach represents a generalization of the treatment described in the reference paper in a sense that it allows for the inclusion of completely unknown parameters in the mathematical model.


2014 ◽  
Vol 4 (1) ◽  
Author(s):  
C. Hu ◽  
Y. Chen ◽  
Y. Peng

AbstractIn the classical geodetic data processing, a non- linear problem always can be converted to a linear least squares adjustment. However, the errors in Jacob matrix are often not being considered when using the least square method to estimate the optimal parameters from a system of equations. Furthermore, the identity weight matrix may not suitable for each element in Jacob matrix. The weighted total least squares method has been frequently applied in geodetic data processing for the case that the observation vector and the coefficient matrix are perturbed by random errors, which are zero mean and statistically in- dependent with inequality variance. In this contribution, we suggested an approach that employ the weighted total least squares to solve the nonlinear problems and to mitigate the affection of noise in Jacob matrix. The weight matrix of the vector from Jacob matrix is derived by the law of nonlinear error propagation. Two numerical examples, one is the triangulation adjustment and another is a simulation experiment, are given at last to validate the feasibility of the developed method.


2018 ◽  
pp. 3-13 ◽  
Author(s):  
Yu. Kuzmenko ◽  
O. Samoylenko

The methods of processing the measurement results of several homogeneous transfer standards existing in the form of single-valued or multi-valued measures/sensors or devices performed at many points on several stationary standards, which participate in key, regional or additional comparisons, are proposed in the article. The number of measurements far exceeds the number of unknown parameters of the standards, which are determined by the results of comparisons, that’s why the method of least squares was chosen as the mathematical apparatus for data processing.


GIS Business ◽  
2019 ◽  
Vol 14 (4) ◽  
pp. 85-98
Author(s):  
Idoko Peter

This research the impact of competitive quasi market on service delivery in Benue State University, Makurdi Nigeria. Both primary and secondary source of data and information were used for the study and questionnaire was used to extract information from the purposively selected respondents. The population for this study is one hundred and seventy three (173) administrative staff of Benue State University selected at random. The statistical tools employed was the classical ordinary least square (OLS) and the probability value of the estimates was used to tests hypotheses of the study. The result of the study indicates that a positive relationship exist between Competitive quasi marketing in Benue State University, Makurdi Nigeria (CQM) and Transparency in the service delivery (TRSP) and the relationship is statistically significant (p<0.05). Competitive quasi marketing (CQM) has a negative effect on Observe Competence in Benue State University, Makurdi Nigeria (OBCP) and the relationship is not statistically significant (p>0.05). Competitive quasi marketing (CQM) has a positive effect on Innovation in Benue State University, Makurdi Nigeria (INVO) and the relationship is statistically significant (p<0.05) and in line with a priori expectation. This means that a unit increases in Competitive quasi marketing (CQM) will result to a corresponding increase in innovation in Benue State University, Makurdi Nigeria (INVO) by a margin of 22.5%. It was concluded that government monopoly in the provision of certain types of services has greatly affected the quality of service experience in the institution. It was recommended among others that the stakeholders in the market has to be transparent so that the system will be productive to serve the society effectively


2020 ◽  
Vol 17 (1) ◽  
pp. 87-94
Author(s):  
Ibrahim A. Naguib ◽  
Fatma F. Abdallah ◽  
Aml A. Emam ◽  
Eglal A. Abdelaleem

: Quantitative determination of pyridostigmine bromide in the presence of its two related substances; impurity A and impurity B was considered as a case study to construct the comparison. Introduction: Novel manipulations of the well-known classical least squares multivariate calibration model were explained in detail as a comparative analytical study in this research work. In addition to the application of plain classical least squares model, two preprocessing steps were tried, where prior to modeling with classical least squares, first derivatization and orthogonal projection to latent structures were applied to produce two novel manipulations of the classical least square-based model. Moreover, spectral residual augmented classical least squares model is included in the present comparative study. Methods: 3 factor 4 level design was implemented constructing a training set of 16 mixtures with different concentrations of the studied components. To investigate the predictive ability of the studied models; a test set consisting of 9 mixtures was constructed. Results: The key performance indicator of this comparative study was the root mean square error of prediction for the independent test set mixtures, where it was found 1.367 when classical least squares applied with no preprocessing method, 1.352 when first derivative data was implemented, 0.2100 when orthogonal projection to latent structures preprocessing method was applied and 0.2747 when spectral residual augmented classical least squares was performed. Conclusion: Coupling of classical least squares model with orthogonal projection to latent structures preprocessing method produced significant improvement of the predictive ability of it.


2021 ◽  
Vol 5 (1) ◽  
pp. 59
Author(s):  
Gaël Kermarrec ◽  
Niklas Schild ◽  
Jan Hartmann

Terrestrial laser scanners (TLS) capture a large number of 3D points rapidly, with high precision and spatial resolution. These scanners are used for applications as diverse as modeling architectural or engineering structures, but also high-resolution mapping of terrain. The noise of the observations cannot be assumed to be strictly corresponding to white noise: besides being heteroscedastic, correlations between observations are likely to appear due to the high scanning rate. Unfortunately, if the variance can sometimes be modeled based on physical or empirical considerations, the latter are more often neglected. Trustworthy knowledge is, however, mandatory to avoid the overestimation of the precision of the point cloud and, potentially, the non-detection of deformation between scans recorded at different epochs using statistical testing strategies. The TLS point clouds can be approximated with parametric surfaces, such as planes, using the Gauss–Helmert model, or the newly introduced T-splines surfaces. In both cases, the goal is to minimize the squared distance between the observations and the approximated surfaces in order to estimate parameters, such as normal vector or control points. In this contribution, we will show how the residuals of the surface approximation can be used to derive the correlation structure of the noise of the observations. We will estimate the correlation parameters using the Whittle maximum likelihood and use comparable simulations and real data to validate our methodology. Using the least-squares adjustment as a “filter of the geometry” paves the way for the determination of a correlation model for many sensors recording 3D point clouds.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Camilo Broc ◽  
Therese Truong ◽  
Benoit Liquet

Abstract Background The increasing number of genome-wide association studies (GWAS) has revealed several loci that are associated to multiple distinct phenotypes, suggesting the existence of pleiotropic effects. Highlighting these cross-phenotype genetic associations could help to identify and understand common biological mechanisms underlying some diseases. Common approaches test the association between genetic variants and multiple traits at the SNP level. In this paper, we propose a novel gene- and a pathway-level approach in the case where several independent GWAS on independent traits are available. The method is based on a generalization of the sparse group Partial Least Squares (sgPLS) to take into account groups of variables, and a Lasso penalization that links all independent data sets. This method, called joint-sgPLS, is able to convincingly detect signal at the variable level and at the group level. Results Our method has the advantage to propose a global readable model while coping with the architecture of data. It can outperform traditional methods and provides a wider insight in terms of a priori information. We compared the performance of the proposed method to other benchmark methods on simulated data and gave an example of application on real data with the aim to highlight common susceptibility variants to breast and thyroid cancers. Conclusion The joint-sgPLS shows interesting properties for detecting a signal. As an extension of the PLS, the method is suited for data with a large number of variables. The choice of Lasso penalization copes with architectures of groups of variables and observations sets. Furthermore, although the method has been applied to a genetic study, its formulation is adapted to any data with high number of variables and an exposed a priori architecture in other application fields.


2021 ◽  
Vol 13 (10) ◽  
pp. 2006
Author(s):  
Jun Hu ◽  
Qiaoqiao Ge ◽  
Jihong Liu ◽  
Wenyan Yang ◽  
Zhigui Du ◽  
...  

The Interferometric Synthetic Aperture Radar (InSAR) technique has been widely used to obtain the ground surface deformation of geohazards (e.g., mining subsidence and landslides). As one of the inherent errors in the interferometric phase, the digital elevation model (DEM) error is usually estimated with the help of an a priori deformation model. However, it is difficult to determine an a priori deformation model that can fit the deformation time series well, leading to possible bias in the estimation of DEM error and the deformation time series. In this paper, we propose a method that can construct an adaptive deformation model, based on a set of predefined functions and the hypothesis testing theory in the framework of the small baseline subset InSAR (SBAS-InSAR) method. Since it is difficult to fit the deformation time series over a long time span by using only one function, the phase time series is first divided into several groups with overlapping regions. In each group, the hypothesis testing theory is employed to adaptively select the optimal deformation model from the predefined functions. The parameters of adaptive deformation models and the DEM error can be modeled with the phase time series and solved by a least square method. Simulations and real data experiments in the Pingchuan mining area, Gaunsu Province, China, demonstrate that, compared to the state-of-the-art deformation modeling strategy (e.g., the linear deformation model and the function group deformation model), the proposed method can significantly improve the accuracy of DEM error estimation and can benefit the estimation of deformation time series.


Axioms ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 25 ◽  
Author(s):  
Ehab Almetwally ◽  
Randa Alharbi ◽  
Dalia Alnagar ◽  
Eslam Hafez

This paper aims to find a statistical model for the COVID-19 spread in the United Kingdom and Canada. We used an efficient and superior model for fitting the COVID 19 mortality rates in these countries by specifying an optimal statistical model. A new lifetime distribution with two-parameter is introduced by a combination of inverted Topp-Leone distribution and modified Kies family to produce the modified Kies inverted Topp-Leone (MKITL) distribution, which covers a lot of application that both the traditional inverted Topp-Leone and the modified Kies provide poor fitting for them. This new distribution has many valuable properties as simple linear representation, hazard rate function, and moment function. We made several methods of estimations as maximum likelihood estimation, least squares estimators, weighted least-squares estimators, maximum product spacing, Crame´r-von Mises estimators, and Anderson-Darling estimators methods are applied to estimate the unknown parameters of MKITL distribution. A numerical result of the Monte Carlo simulation is obtained to assess the use of estimation methods. also, we applied different data sets to the new distribution to assess its performance in modeling data.


Sign in / Sign up

Export Citation Format

Share Document