Coupled modeling and numerical simulation of gas flows laden with solid particles in de Laval nozzles

Shock Waves ◽  
2021 ◽  
Author(s):  
L. Zhang ◽  
Q. Yu ◽  
T. Liu ◽  
Z. Feng ◽  
M. Sun ◽  
...  
Equipment ◽  
2006 ◽  
Author(s):  
Aleksey V. Nenarokomov ◽  
O. M. Alifanov ◽  
E. A. Artioukhine ◽  
I. V. Repin

2019 ◽  
Vol 14 (2) ◽  
pp. 82-88
Author(s):  
M.V. Alekseev ◽  
I.S. Vozhakov ◽  
S.I. Lezhnin

A numerical simulation of the process of the outflow of gas under pressure into a closed container partially filled with liquid was carried out. For comparative theoretical analysis, an asymptotic model was used with assumptions about the adiabaticity of the gas outflow process and the ideality of the liquid during the oscillatory one-dimensional motion of the liquid column. In this case, the motion of the liquid column and the evolution of pressure in the gas are determined by the equation of dynamics and the balance of enthalpy. Numerical simulation was performed in the OpenFOAM package using the fluid volume method (VOF method) and the standard k-e turbulence model. The evolution of the fields of volumetric gas content, velocity, and pressure during the flow of gas from the high-pressure chamber into a closed channel filled with liquid in the presence of a ”gas blanket“ at the upper end of the channel is obtained. It was shown that the dynamics of pulsations in the gas cavity that occurs when the gas flows into the closed region substantially depends on the physical properties of the liquid in the volume, especially the density. Numerical modeling showed that the injection of gas into water occurs in the form of a jet outflow of gas, and for the outflow into liquid lead, a gas slug is formed at the bottom of the channel. Satisfactory agreement was obtained between the numerical calculation and the calculation according to the asymptotic model for pressure pulsations in a gas projectile in liquid lead. For water, the results of calculations using the asymptotic model give a significant difference from the results of numerical calculations. In all cases, the velocity of the medium obtained by numerical simulation and when using the asymptotic model differ by an order of magnitude or more.


2015 ◽  
Vol 19 (1) ◽  
pp. 317-328 ◽  
Author(s):  
Giuseppe Canneto ◽  
Cesare Freda ◽  
Giacobbe Braccio

The gas-particles flow in an interconnected bubbling fluidized cold model is simulated using a commercial CFD package by Ansys. Conservation equations of mass and momentum are solved using the Eulerian granular multiphase model. Bubbles formation and their paths are analyzed to investigate the behaviour of the bed at different gas velocities. Experimental tests, carried out by the cold model, are compared with simulation runs to study the fluidization quality and to estimate the circulation of solid particles in the bed.


Author(s):  
Elmar Anton Schnorr Filho ◽  
Nicolao Lima ◽  
Erick de Moraes Franklin

2019 ◽  
Vol 37 ◽  
pp. 109-116
Author(s):  
Koorosh Zaheri ◽  
Morteza Bayareh ◽  
Afshin Nadooshan

2012 ◽  
Vol 192-193 ◽  
pp. 293-298 ◽  
Author(s):  
Fan Zhang ◽  
Nan Nan Song ◽  
Jun Zhang ◽  
Yong Lin Kang ◽  
Qiang Zhu

According to semi-solid slurry rheological behavior, an apparent viscosity model of A356 alloy developed based on the Carreau model was established to simulate filling process of rheo-diecasting about automobile shock absorber parts and to compare with conventional liquid filling process. Numerical simulation results showed that the filling process of rheo-diecasting was smooth but difficult to splash, which reduced the tendency of the alloy oxidation and inclusion. Meanwhile, a certain percentage of the primary solid particles precipitated before filling and solidification shrinkage of semi-solid slurry were small. This benefited to reduce or eliminate shrinkage defects of the castings. Compared with conventional liquid die casting process, rheo-diecasting process had unique advantages in reducing the internal defects and improving mechanical properties of castings.


Author(s):  
Tomomi Uchiyama

This paper is concerned with the numerical simulation of the particulate jet generated by solid particles falling from a slit orifice into an unbounded quiescent air. A two-dimensional vortex method, proposed for the analysis of particle-laden free turbulent flow in prior papers, is employed for the simulation. The falling particles induce complicated airflow involving eddies with a wide variety of scales. The air takes its maximum velocity at the jet centerline. The particle velocity is higher than the free falling velocity of a single particle. The effects of the diameter and density of the particle on the flow are investigated. The entrained airflow rate is favorably compared with the value predicted by an analytical model.


2015 ◽  
Vol 55 (4) ◽  
pp. 677-689
Author(s):  
D. A. Zabarko ◽  
V. I. Zubov ◽  
V. P. Kotenev ◽  
V. M. Krivtsov ◽  
Yu. A. Polezhaev

Sign in / Sign up

Export Citation Format

Share Document