Numerical simulation of hydraulic conveying of solid particles through a narrow elbow

Author(s):  
Elmar Anton Schnorr Filho ◽  
Nicolao Lima ◽  
Erick de Moraes Franklin
2015 ◽  
Vol 19 (1) ◽  
pp. 317-328 ◽  
Author(s):  
Giuseppe Canneto ◽  
Cesare Freda ◽  
Giacobbe Braccio

The gas-particles flow in an interconnected bubbling fluidized cold model is simulated using a commercial CFD package by Ansys. Conservation equations of mass and momentum are solved using the Eulerian granular multiphase model. Bubbles formation and their paths are analyzed to investigate the behaviour of the bed at different gas velocities. Experimental tests, carried out by the cold model, are compared with simulation runs to study the fluidization quality and to estimate the circulation of solid particles in the bed.


2019 ◽  
Vol 37 ◽  
pp. 109-116
Author(s):  
Koorosh Zaheri ◽  
Morteza Bayareh ◽  
Afshin Nadooshan

2012 ◽  
Vol 192-193 ◽  
pp. 293-298 ◽  
Author(s):  
Fan Zhang ◽  
Nan Nan Song ◽  
Jun Zhang ◽  
Yong Lin Kang ◽  
Qiang Zhu

According to semi-solid slurry rheological behavior, an apparent viscosity model of A356 alloy developed based on the Carreau model was established to simulate filling process of rheo-diecasting about automobile shock absorber parts and to compare with conventional liquid filling process. Numerical simulation results showed that the filling process of rheo-diecasting was smooth but difficult to splash, which reduced the tendency of the alloy oxidation and inclusion. Meanwhile, a certain percentage of the primary solid particles precipitated before filling and solidification shrinkage of semi-solid slurry were small. This benefited to reduce or eliminate shrinkage defects of the castings. Compared with conventional liquid die casting process, rheo-diecasting process had unique advantages in reducing the internal defects and improving mechanical properties of castings.


Author(s):  
Tomomi Uchiyama

This paper is concerned with the numerical simulation of the particulate jet generated by solid particles falling from a slit orifice into an unbounded quiescent air. A two-dimensional vortex method, proposed for the analysis of particle-laden free turbulent flow in prior papers, is employed for the simulation. The falling particles induce complicated airflow involving eddies with a wide variety of scales. The air takes its maximum velocity at the jet centerline. The particle velocity is higher than the free falling velocity of a single particle. The effects of the diameter and density of the particle on the flow are investigated. The entrained airflow rate is favorably compared with the value predicted by an analytical model.


2012 ◽  
Vol 2012.25 (0) ◽  
pp. 9-10
Author(s):  
Taimei MIYAGAWA ◽  
Yohsuke IMAI ◽  
Takuji ISHIKAWA ◽  
Takami YAMAGUCHI

Author(s):  
Bin Zhang ◽  
Tatsuya Matsumoto ◽  
Koji Morita ◽  
Hidemasa Yamano ◽  
Hirotaka Tagami ◽  
...  

During a hypothetical core-disruptive accident in a sodium-cooled FBR, degraded core material can form debris beds on the core-support structure and/or in the lower inlet plenum of the reactor vessel, due to the rapid quenching and fragmentation of the core material melt. Heat convection and vaporization of the sodium will lead ultimately to leveling the debris bed that is of crucial importance to the relocation of the molten core, the recriticality evaluation and the heat removal capability of the debris bed. There is, therefore, a great need for more studies focusing on this topic, especially the much needed numerical simulation. The widely-used fast reactor safety analysis code, SIMMER-III, has difficulties in this simulation because of the lack of modeling for mechanistic interactions among particles in the current version. However, the extensive experimental analysis and the previously-proposed analytical model provide SIMMER-III the possibility of taking consideration of the extra influence of solid particles in this phenomenon. Thus, the debris fluidization model and the boiling regulation model are proposed and introduced into SIMMER-III. Calculations, by the modified SIMMER-III, against several representative experiments with typical self-leveling behavior have been performed and compared with the evaluated items recorded in experiments. The good agreements on these items suggest the modified SIMMER-III can simulate the self-leveling behavior with reasonable precision, especially on the onset of self-leveling, although further model improvement is necessary to represent the transient behavior of bed leveling more reasonably.


2011 ◽  
Vol 11 (02) ◽  
pp. 407-421
Author(s):  
KOJI FUKAGATA ◽  
KATSUKO S. FURUKAWA ◽  
TAKASHI USHIDA

The accumulation mechanism of cells in a rotational culture device is investigated from the viewpoint of fluid mechanics. For simplicity, the deformation of the water surface is neglected and the cells are treated as spherical solid particles. From the numerical simulation of flow field with typical parameters used in the previous experiments, it is confirmed that the relative velocity of fluid induced by the rotational shaking is much smaller than the speed of rotation. From the analysis of particle equation of motion, it is found that the accumulation of cells toward the central region is found to be due to the interaction between the acceleration by rotational shaking and the drag force acting on the cells. The integral time scale for cell accumulation was estimated to be about 10 min for typical cases. The accumulation speed increases quadratically with the diameter of cell and the angular velocity of rotational shaking, which qualitatively support the previous experimental observation.


Sign in / Sign up

Export Citation Format

Share Document