Bone mineral density and mandibular bone quality in patients receiving dental implants: reply to Dr. Taguchi

2007 ◽  
Vol 19 (4) ◽  
pp. 589-589
Author(s):  
M. A. L. Amorim
2010 ◽  
Vol 21 (3) ◽  
pp. 199-204 ◽  
Author(s):  
Suzie Aparecida Lacerda ◽  
Renata Inahara Matuoka ◽  
Rander Moreira Macedo ◽  
Sergio Olavo Petenusci ◽  
Alessandra Aparecida Campos ◽  
...  

Caffeine induces loss of calcium and influences the normal development of bone. This study investigated the effects of coffee on bone metabolism in rats by biochemical measurement of calcium, bone densitometry and histometry. Male rats, born of female treated daily with coffee and with coffee intake since born, were anesthetized, subjected to extraction of the upper right incisor, and sacrificed 7, 21 and 42 days after surgery. Blood and urine samples were taken, and their maxilla radiographed and processed to obtain 5-µm-thick semi-serial sections stained with hematoxylin and eosin. The volume and bone quality were estimated using an image-analysis software. The results showed significantly greater amount of calcium in the plasma (9.40 ± 1.73 versus 9.80 ± 2.05 mg%) and urine (1.00 ± 0.50 versus 1.25 ± 0.70 mg/24 h) and significantly less amount in bone (90.0 ± 1.94 versus 86.0 ± 2.12 mg/mg bone), reduced bone mineral density (1.05 ± 0.11 versus 0.65 ± 0.15 mmAL), and lower amount of bone (76.19 ± 1.6 versus 53.41 ± 2.1 %) (ANOVA; p≤0.01) in animals treated with coffee sacrificed after 42 days. It may be concluded that coffee/caffeine intake caused serious adverse effects on calcium metabolism in rats, including increased levels of calcium in the urine and plasma, decreased bone mineral density and lower volume of bone, thus delaying the bone repair process.


2021 ◽  
Vol 7 ◽  
Author(s):  
Fabio Massimo Ulivieri ◽  
Luca Rinaudo

For a proper assessment of osteoporotic fragility fracture prediction, all aspects regarding bone mineral density, bone texture, geometry and information about strength are necessary, particularly in endocrinological and rheumatological diseases, where bone quality impairment is relevant. Data regarding bone quantity (density) and, partially, bone quality (structure and geometry) are obtained by the gold standard method of dual X-ray absorptiometry (DXA). Data about bone strength are not yet readily available. To evaluate bone resistance to strain, a new DXA-derived index based on the Finite Element Analysis (FEA) of a greyscale of density distribution measured on spine and femoral scan, namely Bone Strain Index (BSI), has recently been developed. Bone Strain Index includes local information on density distribution, bone geometry and loadings and it differs from bone mineral density (BMD) and other variables of bone quality like trabecular bone score (TBS), which are all based on the quantification of bone mass and distribution averaged over the scanned region. This state of the art review illustrates the methodology of BSI calculation, the findings of its in reproducibility and the preliminary data about its capability to predict fragility fracture and to monitor the follow up of the pharmacological treatment for osteoporosis.


2021 ◽  
Author(s):  
Plauto Christopher Aranha Watanabe ◽  
Giovani Antonio Rodrigues ◽  
Marcelo Rodrigues Azenha ◽  
Michel Campos Ribeiro ◽  
Enéas de Almeida Souza Filho ◽  
...  

Research suggests the use of different indexes on panoramic radiography as a way to assess BMD and to be able to detect changes in bone metabolism before fractures occur. Therefore, the objective of this chapter is to describe the use of these parameters as an auxiliary mechanism in the detection of low bone mineral density, as well as to characterize the radiographic findings of patients with osteoporosis.


Sign in / Sign up

Export Citation Format

Share Document