scholarly journals Carbon partitioning to the terpenoid biosynthetic pathway enables heterologous β-phellandrene production in Escherichia coli cultures

2014 ◽  
Vol 196 (12) ◽  
pp. 853-861 ◽  
Author(s):  
Cinzia Formighieri ◽  
Anastasios Melis
2021 ◽  
pp. 2000433
Author(s):  
Cynthia Ni ◽  
Kevin J. Fox ◽  
Kristala L. J. Prather

2021 ◽  
Vol 329 ◽  
pp. 104-117
Author(s):  
Liangzhen Jiang ◽  
Jing Pang ◽  
Lixia Yang ◽  
Wei Li ◽  
Lili Duan ◽  
...  

2003 ◽  
Vol 185 (18) ◽  
pp. 5391-5397 ◽  
Author(s):  
Si Jae Park ◽  
Sang Yup Lee

ABSTRACT The biosynthetic pathway of medium-chain-length (MCL) polyhydroxyalkanoates (PHAs) from fatty acids has been established in fadB mutant Escherichia coli strain by expressing the MCL-PHA synthase gene. However, the enzymes that are responsible for the generation of (R)-3-hydroxyacyl coenzyme A (R3HA-CoAs), the substrates for PHA synthase, have not been thoroughly elucidated. Escherichia coli MaoC, which is homologous to Pseudomonas aeruginosa (R)-specific enoyl-CoA hydratase (PhaJ1), was identified and found to be important for PHA biosynthesis in a fadB mutant E. coli strain. When the MCL-PHA synthase gene was introduced, the fadB maoC double-mutant E. coli WB108, which is a derivative of E. coli W3110, accumulated 43% less amount of MCL-PHA from fatty acid compared with the fadB mutant E. coli WB101. The PHA biosynthetic capacity could be restored by plasmid-based expression of the maoCEc gene in E. coli WB108. Also, E. coli W3110 possessing fully functional β-oxidation pathway could produce MCL-PHA from fatty acid by the coexpression of the maoCEc gene and the MCL-PHA synthase gene. For the enzymatic analysis, MaoC fused with His6-Tag at its C-terminal was expressed in E. coli and purified. Enzymatic analysis of tagged MaoC showed that MaoC has enoyl-CoA hydratase activity toward crotonyl-CoA. These results suggest that MaoC is a new enoyl-CoA hydratase involved in supplying (R)-3-hydroxyacyl-CoA from the β-oxidation pathway to PHA biosynthetic pathway in the fadB mutant E. coli strain.


2012 ◽  
Vol 50 (4) ◽  
pp. 693-697 ◽  
Author(s):  
Qi Wang ◽  
Changshui Liu ◽  
Mo Xian ◽  
Yongguang Zhang ◽  
Guang Zhao

2020 ◽  
Author(s):  
Jing Huang ◽  
Zhennan Liu ◽  
brandon bloomer ◽  
Douglas Clark ◽  
Aindrila Mukhopadhyay ◽  
...  

<div>Synthetic biology enables microbial hosts to produce complex molecules that are</div><div>otherwise produced by organisms that are rare or difficult to cultivate, but the structures of these</div><div>molecules are limited to chemical reactions catalyzed by natural enzymes. The integration of</div><div>artificial metalloenzymes (ArMs) that catalyze abiotic reactions into metabolic networks could</div><div>broaden the cache of molecules produced biosynthetically by microorgansms. We report the</div><div>assembly of an ArM containing an iridium-porphyrin complex in the cytoplasm of a terpene</div><div>producing Escherichia coli by a heterologous heme transport machinery, and insertion of this ArM</div><div>into a natural biosynthetic pathway to produce an unnatural terpenoid. This work shows that</div><div>synthetic biology and synthetic chemistry, incorporated together in whole cells, can produce</div><div>molecules previously inaccessible to nature.</div>


2019 ◽  
Vol 476 (21) ◽  
pp. 3125-3139 ◽  
Author(s):  
Daniel Shiu-Hin Chan ◽  
Jeannine Hess ◽  
Elen Shaw ◽  
Christina Spry ◽  
Robert Starley ◽  
...  

Abstract CoaBC, part of the vital coenzyme A biosynthetic pathway in bacteria, has recently been validated as a promising antimicrobial target. In this work, we employed native ion mobility–mass spectrometry to gain structural insights into the phosphopantothenoylcysteine synthetase domain of E. coli CoaBC. Moreover, native mass spectrometry was validated as a screening tool to identify novel inhibitors of this enzyme, highlighting the utility and versatility of this technique both for structural biology and for drug discovery.


2018 ◽  
Vol 71 ◽  
pp. 23-30 ◽  
Author(s):  
Baosheng Ge ◽  
Yao Chen ◽  
Qian Yu ◽  
Xiaojun Lin ◽  
Jiqiang Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document