scholarly journals Fano schemes of complete intersections in toric varieties

Author(s):  
Nathan Ilten ◽  
Tyler L. Kelly

AbstractWe study Fano schemes $$\mathrm{F}_k(X)$$ F k ( X ) for complete intersections X in a projective toric variety $$Y\subset \mathbb {P}^n$$ Y ⊂ P n . Our strategy is to decompose $$\mathrm{F}_k(X)$$ F k ( X ) into closed subschemes based on the irreducible decomposition of $$\mathrm{F}_k(Y)$$ F k ( Y ) as studied by Ilten and Zotine. We define the “expected dimension” for these subschemes, which always gives a lower bound on the actual dimension. Under additional assumptions, we show that these subschemes are non-empty and smooth of the expected dimension. Using tools from intersection theory, we can apply these results to count the number of linear subspaces in X when the expected dimension of $$\mathrm{F}_k(X)$$ F k ( X ) is zero.

2004 ◽  
Vol 56 (5) ◽  
pp. 1094-1120
Author(s):  
Hugh Thomas

AbstractThis paper addresses the problem of constructing a cycle-level intersection theory for toric varieties. We show that by making one global choice, we can determine a cycle representative for the intersection of an equivariant Cartier divisor with an invariant cycle on a toric variety. For a toric variety defined by a fan inN, the choice consists of giving an inner product or a complete flag forMQ= ℚ ⊗ Hom(N, ℤ), or more generally giving for each cone σ in the fan a linear subspace ofMQcomplementary to σ⊥, satisfying certain compatibility conditions. We show that these intersection cycles have properties analogous to the usual intersections modulo rational equivalence. IfXis simplicial (for instance, ifXis non-singular), we obtain a commutative ring structure to the invariant cycles ofXwith rational coefficients. This ring structure determines cycles representing certain characteristic classes of the toric variety. We also discuss how to define intersection cycles that require no choices, at the expense of increasing the size of the coefficient field.


2020 ◽  
Vol 31 (13) ◽  
pp. 2050113
Author(s):  
Tsung-Ju Lee ◽  
Dingxin Zhang

We investigate the solution space to certain [Formula: see text]-hypergeometric [Formula: see text]-modules, which were defined and studied by Gelfand, Kapranov, and Zelevinsky. We show that the solution space can be identified with certain relative cohomology group of the toric variety determined by [Formula: see text], which generalizes the results of Huang, Lian, Yau and Zhu. As a corollary, we also prove the existence of rank one points for complete intersections in toric varieties.


Author(s):  
Ugo Bruzzo ◽  
William D. Montoya

AbstractFor a quasi-smooth hypersurface X in a projective simplicial toric variety $$\mathbb {P}_{\Sigma }$$ P Σ , the morphism $$i^*:H^p(\mathbb {P}_{\Sigma })\rightarrow H^p(X)$$ i ∗ : H p ( P Σ ) → H p ( X ) induced by the inclusion is injective for $$p=\dim X$$ p = dim X and an isomorphism for $$p<\dim X-1$$ p < dim X - 1 . This allows one to define the Noether–Lefschetz locus $$\mathrm{NL}_{\beta }$$ NL β as the locus of quasi-smooth hypersurfaces of degree $$\beta $$ β such that $$i^*$$ i ∗ acting on the middle algebraic cohomology is not an isomorphism. We prove that, under some assumptions, if $$\dim \mathbb {P}_{\Sigma }=2k+1$$ dim P Σ = 2 k + 1 and $$k\beta -\beta _0=n\eta $$ k β - β 0 = n η , $$n\in \mathbb {N}$$ n ∈ N , where $$\eta $$ η is the class of a 0-regular ample divisor, and $$\beta _0$$ β 0 is the anticanonical class, every irreducible component V of the Noether–Lefschetz locus quasi-smooth hypersurfaces of degree $$\beta $$ β satisfies the bounds $$n+1\leqslant \mathrm{codim}\,Z \leqslant h^{k-1,\,k+1}(X)$$ n + 1 ⩽ codim Z ⩽ h k - 1 , k + 1 ( X ) .


Author(s):  
Tom Bachmann ◽  
Kirsten Wickelgren

Abstract We equate various Euler classes of algebraic vector bundles, including those of [12] and one suggested by M. J. Hopkins, A. Raksit, and J.-P. Serre. We establish integrality results for this Euler class and give formulas for local indices at isolated zeros, both in terms of the six-functors formalism of coherent sheaves and as an explicit recipe in the commutative algebra of Scheja and Storch. As an application, we compute the Euler classes enriched in bilinear forms associated to arithmetic counts of d-planes on complete intersections in $\mathbb P^n$ in terms of topological Euler numbers over $\mathbb {R}$ and $\mathbb {C}$ .


Author(s):  
Ugo Bruzzo ◽  
William Montoya

AbstractWe establish the Hodge conjecture for some subvarieties of a class of toric varieties. First we study quasi-smooth intersections in a projective simplicial toric variety, which is a suitable notion to generalize smooth complete intersection subvarieties in the toric environment, and in particular quasi-smooth hypersurfaces. We show that under appropriate conditions, the Hodge conjecture holds for a very general quasi-smooth intersection subvariety, generalizing the work on quasi-smooth hypersurfaces of the first author and Grassi in Bruzzo and Grassi (Commun Anal Geom 28: 1773–1786, 2020). We also show that the Hodge Conjecture holds asymptotically for suitable quasi-smooth hypersurface in the Noether–Lefschetz locus, where “asymptotically” means that the degree of the hypersurface is big enough, under the assumption that the ambient variety $${{\mathbb {P}}}_\Sigma ^{2k+1}$$ P Σ 2 k + 1 has Picard group $${\mathbb {Z}}$$ Z . This extends to a class of toric varieties Otwinowska’s result in Otwinowska (J Alg Geom 12: 307–320, 2003).


Author(s):  
Michele Rossi ◽  
Lea Terracini

AbstractLet X be a $$\mathbb {Q}$$ Q -factorial complete toric variety over an algebraic closed field of characteristic 0. There is a canonical injection of the Picard group $$\mathrm{Pic}(X)$$ Pic ( X ) in the group $$\mathrm{Cl}(X)$$ Cl ( X ) of classes of Weil divisors. These two groups are finitely generated abelian groups; while the first one is a free group, the second one may have torsion. We investigate algebraic and geometrical conditions under which the image of $$\mathrm{Pic}(X)$$ Pic ( X ) in $$\mathrm{Cl}(X)$$ Cl ( X ) is contained in a free part of the latter group.


2015 ◽  
Vol 68 ◽  
pp. 265-286 ◽  
Author(s):  
Isabel Bermejo ◽  
Ignacio García-Marco

Topology ◽  
1997 ◽  
Vol 36 (2) ◽  
pp. 335-353 ◽  
Author(s):  
William Fulton ◽  
Bernd Sturmfels

10.37236/5038 ◽  
2016 ◽  
Vol 23 (2) ◽  
Author(s):  
Laura Escobar

Bott-Samelson varieties are a twisted product of $\mathbb{C}\mathbb{P}^1$'s with a map into $G/B$. These varieties are mostly studied in the case in which the map into $G/B$ is birational to the image; however in this paper we study a fiber of this map when it is not birational. We prove that in some cases the general fiber, which we christen a brick manifold, is a toric variety. In order to do so we use the moment map of a Bott-Samelson variety to translate this problem into one in terms of the "subword complexes" of Knutson and Miller. Pilaud and Stump realized certain subword complexes as the dual of the boundary of a polytope which generalizes the brick polytope defined by Pilaud and Santos. For a nice family of words, the brick polytope is the generalized associahedron realized by Hohlweg, Lange and Thomas. These stories connect in a nice way: we show that the moment polytope of the brick manifold is the brick polytope. In particular, we give a nice description of the toric variety of the associahedron. We give each brick manifold a stratification dual to the subword complex. In addition, we relate brick manifolds to Brion's resolutions of Richardon varieties.


Sign in / Sign up

Export Citation Format

Share Document