Quasi-Norm interpolation error estimates for the piecewise linear finite element approximation of p-Laplacian problems

2005 ◽  
Vol 100 (2) ◽  
pp. 233-258 ◽  
Author(s):  
Carsten Ebmeyer ◽  
WB. Liu
1999 ◽  
Vol 09 (05) ◽  
pp. 627-663 ◽  
Author(s):  
JOHN W. BARRETT ◽  
JAMES F. BLOWEY

We consider a model for phase separation of a multi-component alloy with nonsmooth free energy and a concentration dependent mobility matrix. In particular we prove that there exists a unique solution for sufficiently smooth initial data. Further, we prove an error bound for a fully practical piecewise linear finite element approximation in one and two space dimensions. Finally numerical experiments with three components in one space dimension are presented.


2020 ◽  
Vol 30 (05) ◽  
pp. 847-865
Author(s):  
Gabriel Barrenechea ◽  
Erik Burman ◽  
Johnny Guzmán

We consider a linearised model of incompressible inviscid flow. Using a regularisation based on the Hodge Laplacian we prove existence and uniqueness of weak solutions for smooth domains. The model problem is then discretised using [Formula: see text](div)-conforming finite element methods, for which we prove error estimates for the velocity approximation in the [Formula: see text]-norm of order [Formula: see text]. We also prove error estimates for the pressure error in the [Formula: see text]-norm.


2020 ◽  
Vol 20 (2) ◽  
pp. 361-378
Author(s):  
Tamal Pramanick ◽  
Rajen Kumar Sinha

AbstractThe purpose of this paper is to generalize known a priori error estimates of the composite finite element (CFE) approximations of elliptic problems in nonconvex polygonal domains to the time dependent parabolic problems. This is a new class of finite elements which was introduced by [W. Hackbusch and S. A. Sauter, Composite finite elements for the approximation of PDEs on domains with complicated micro-structures, Numer. Math. 75 1997, 4, 447–472] and subsequently modified by [M. Rech, S. A. Sauter and A. Smolianski, Two-scale composite finite element method for Dirichlet problems on complicated domains, Numer. Math. 102 2006, 4, 681–708] for the approximations of stationery problems on complicated domains. The basic idea of the CFE procedure is to work with fewer degrees of freedom by allowing finite element mesh to resolve the domain boundaries and to preserve the asymptotic order convergence on coarse-scale mesh. We analyze both semidiscrete and fully discrete CFE methods for parabolic problems in two-dimensional nonconvex polygonal domains and derive error estimates of order {\mathcal{O}(H^{s}\widehat{\mathrm{Log}}{}^{\frac{s}{2}}(\frac{H}{h}))} and {\mathcal{O}(H^{2s}\widehat{\mathrm{Log}}{}^{s}(\frac{H}{h}))} in the {L^{\infty}(H^{1})}-norm and {L^{\infty}(L^{2})}-norm, respectively. Moreover, for homogeneous equations, error estimates are derived for nonsmooth initial data. Numerical results are presented to support the theoretical rates of convergence.


Sign in / Sign up

Export Citation Format

Share Document