scholarly journals Well-posedness and H(div)-conforming finite element approximation of a linearised model for inviscid incompressible flow

2020 ◽  
Vol 30 (05) ◽  
pp. 847-865
Author(s):  
Gabriel Barrenechea ◽  
Erik Burman ◽  
Johnny Guzmán

We consider a linearised model of incompressible inviscid flow. Using a regularisation based on the Hodge Laplacian we prove existence and uniqueness of weak solutions for smooth domains. The model problem is then discretised using [Formula: see text](div)-conforming finite element methods, for which we prove error estimates for the velocity approximation in the [Formula: see text]-norm of order [Formula: see text]. We also prove error estimates for the pressure error in the [Formula: see text]-norm.

2003 ◽  
Vol 13 (11) ◽  
pp. 1673-1687 ◽  
Author(s):  
DANIELE BOFFI ◽  
LESZEK DEMKOWICZ ◽  
MARTIN COSTABEL

In this paper we discuss the hp edge finite element approximation of the Maxwell cavity eigenproblem. We address the main arguments for the proof of the discrete compactness property. The proof is based on a conjectured L2 stability estimate for the involved polynomial spaces which has been verified numerically for p≤15 and illustrated with the corresponding one dimensional model problem.


2020 ◽  
Vol 20 (2) ◽  
pp. 361-378
Author(s):  
Tamal Pramanick ◽  
Rajen Kumar Sinha

AbstractThe purpose of this paper is to generalize known a priori error estimates of the composite finite element (CFE) approximations of elliptic problems in nonconvex polygonal domains to the time dependent parabolic problems. This is a new class of finite elements which was introduced by [W. Hackbusch and S. A. Sauter, Composite finite elements for the approximation of PDEs on domains with complicated micro-structures, Numer. Math. 75 1997, 4, 447–472] and subsequently modified by [M. Rech, S. A. Sauter and A. Smolianski, Two-scale composite finite element method for Dirichlet problems on complicated domains, Numer. Math. 102 2006, 4, 681–708] for the approximations of stationery problems on complicated domains. The basic idea of the CFE procedure is to work with fewer degrees of freedom by allowing finite element mesh to resolve the domain boundaries and to preserve the asymptotic order convergence on coarse-scale mesh. We analyze both semidiscrete and fully discrete CFE methods for parabolic problems in two-dimensional nonconvex polygonal domains and derive error estimates of order {\mathcal{O}(H^{s}\widehat{\mathrm{Log}}{}^{\frac{s}{2}}(\frac{H}{h}))} and {\mathcal{O}(H^{2s}\widehat{\mathrm{Log}}{}^{s}(\frac{H}{h}))} in the {L^{\infty}(H^{1})}-norm and {L^{\infty}(L^{2})}-norm, respectively. Moreover, for homogeneous equations, error estimates are derived for nonsmooth initial data. Numerical results are presented to support the theoretical rates of convergence.


Symmetry ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 218 ◽  
Author(s):  
Praveen Kalarickel Ramakrishnan ◽  
Mirco Raffetto

A set of sufficient conditions for the well posedness and the convergence of the finite element approximation of three-dimensional time-harmonic electromagnetic boundary value problems involving non-conducting rotating objects with stationary boundaries or bianisotropic media is provided for the first time to the best of authors’ knowledge. It is shown that it is not difficult to check the validity of these conditions and that they hold true for broad classes of practically important problems which involve rotating or bianisotropic materials. All details of the applications of the theory are provided for electromagnetic problems involving rotating axisymmetric objects.


2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Hai Bi ◽  
Shixian Ren ◽  
Yidu Yang

This paper characterizes the spectrum of a fourth-order Steklov eigenvalue problem by using the spectral theory of completely continuous operator. The conforming finite element approximation for this problem is analyzed, and the error estimate is given. Finally, the bounds for Steklov eigenvalues on the square domain are provided by Bogner-Fox-Schmit element and Morley element.


Sign in / Sign up

Export Citation Format

Share Document