scholarly journals A cut finite element method for a model of pressure in fractured media

2020 ◽  
Vol 146 (4) ◽  
pp. 783-818
Author(s):  
Erik Burman ◽  
Peter Hansbo ◽  
Mats G. Larson

AbstractWe develop a robust cut finite element method for a model of diffusion in fractured media consisting of a bulk domain with embedded cracks. The crack has its own pressure field and can cut through the bulk mesh in a very general fashion. Starting from a common background bulk mesh, that covers the domain, finite element spaces are constructed for the interface and bulk subdomains leading to efficient computations of the coupling terms. The crack pressure field also uses the bulk mesh for its representation. The interface conditions are a generalized form of conditions of Robin type previously considered in the literature which allows the modeling of a range of flow regimes across the fracture. The method is robust in the following way: (1) Stability of the formulation in the full range of parameter choices; and (2) Not sensitive to the location of the interface in the background mesh. We derive an optimal order a priori error estimate and present illustrating numerical examples.

Author(s):  
B Ashby ◽  
C Bortolozo ◽  
A Lukyanov ◽  
T Pryer

Summary In this article, we present a goal-oriented adaptive finite element method for a class of subsurface flow problems in porous media, which exhibit seepage faces. We focus on a representative case of the steady state flows governed by a nonlinear Darcy–Buckingham law with physical constraints on subsurface-atmosphere boundaries. This leads to the formulation of the problem as a variational inequality. The solutions to this problem are investigated using an adaptive finite element method based on a dual-weighted a posteriori error estimate, derived with the aim of reducing error in a specific target quantity. The quantity of interest is chosen as volumetric water flux across the seepage face, and therefore depends on an a priori unknown free boundary. We apply our method to challenging numerical examples as well as specific case studies, from which this research originates, illustrating the major difficulties that arise in practical situations. We summarise extensive numerical results that clearly demonstrate the designed method produces rapid error reduction measured against the number of degrees of freedom.


Author(s):  
Georgios Akrivis ◽  
Buyang Li

Abstract The implicit Euler scheme for nonlinear partial differential equations of gradient flows is linearized by Newton’s method, discretized in space by the finite element method. With two Newton iterations at each time level, almost optimal order convergence of the numerical solutions is established in both the $L^q(\varOmega )$ and $W^{1,q}(\varOmega )$ norms. The proof is based on techniques utilizing the resolvent estimate of elliptic operators on $L^q(\varOmega )$ and the maximal $L^p$-regularity of fully discrete finite element solutions on $W^{-1,q}(\varOmega )$.


2019 ◽  
Vol 53 (2) ◽  
pp. 585-614 ◽  
Author(s):  
Christoph Lehrenfeld ◽  
Maxim Olshanskii

The paper introduces a new finite element numerical method for the solution of partial differential equations on evolving domains. The approach uses a completely Eulerian description of the domain motion. The physical domain is embedded in a triangulated computational domain and can overlap the time-independent background mesh in an arbitrary way. The numerical method is based on finite difference discretizations of time derivatives and a standard geometrically unfitted finite element method with an additional stabilization term in the spatial domain. The performance and analysis of the method rely on the fundamental extension result in Sobolev spaces for functions defined on bounded domains. This paper includes a complete stability and error analysis, which accounts for discretization errors resulting from finite difference and finite element approximations as well as for geometric errors coming from a possible approximate recovery of the physical domain. Several numerical examples illustrate the theory and demonstrate the practical efficiency of the method.


2018 ◽  
Vol 52 (6) ◽  
pp. 2247-2282 ◽  
Author(s):  
Erik Burman ◽  
Peter Hansbo ◽  
Mats G. Larson ◽  
André Massing

We develop a theoretical framework for the analysis of stabilized cut finite element methods for the Laplace-Beltrami operator on a manifold embedded in ℝd of arbitrary codimension. The method is based on using continuous piecewise linears on a background mesh in the embedding space for approximation together with a stabilizing form that ensures that the resulting problem is stable. The discrete manifold is represented using a triangulation which does not match the background mesh and does not need to be shape-regular, which includes level set descriptions of codimension one manifolds and the non-matching embedding of independently triangulated manifolds as special cases. We identify abstract key assumptions on the stabilizing form which allow us to prove a bound on the condition number of the stiffness matrix and optimal order a priori estimates. The key assumptions are verified for three different realizations of the stabilizing form including a novel stabilization approach based on penalizing the surface normal gradient on the background mesh. Finally, we present numerical results illustrating our results for a curve and a surface embedded in ℝ3.


Sign in / Sign up

Export Citation Format

Share Document