Investigation of the effects of ‘piperazine-containing party pills’ and dexamphetamine on interhemispheric communication using electroencephalography

2016 ◽  
Vol 233 (15-16) ◽  
pp. 2869-2877 ◽  
Author(s):  
HeeSeung Lee ◽  
Grace Y. Wang ◽  
Louise E. Curley ◽  
Rob R. Kydd ◽  
Ian J. Kirk ◽  
...  
2002 ◽  
Vol 40 (12) ◽  
pp. 1983-1999 ◽  
Author(s):  
Chad J Marsolek ◽  
Christopher D Nicholas ◽  
David R Andresen

2017 ◽  
Vol 31 (2) ◽  
pp. 218-226 ◽  
Author(s):  
Saskia Steinmann ◽  
Jan Meier ◽  
Guido Nolte ◽  
Andreas K. Engel ◽  
Gregor Leicht ◽  
...  

2015 ◽  
Vol 282 (1818) ◽  
pp. 20151535 ◽  
Author(s):  
Kimberley A. Phillips ◽  
Cheryl D. Stimpson ◽  
Jeroen B. Smaers ◽  
Mary Ann Raghanti ◽  
Bob Jacobs ◽  
...  

Interhemispheric communication may be constrained as brain size increases because of transmission delays in action potentials over the length of axons. Although one might expect larger brains to have progressively thicker axons to compensate, spatial packing is a limiting factor. Axon size distributions within the primate corpus callosum (CC) may provide insights into how these demands affect conduction velocity. We used electron microscopy to explore phylogenetic variation in myelinated axon density and diameter of the CC from 14 different anthropoid primate species, including humans. The majority of axons were less than 1 µm in diameter across all species, indicating that conduction velocity for most interhemispheric communication is relatively constant regardless of brain size. The largest axons within the upper 95th percentile scaled with a progressively higher exponent than the median axons towards the posterior region of the CC. While brain mass among the primates in our analysis varied by 97-fold, estimates of the fastest cross-brain conduction times, as conveyed by axons at the 95th percentile, varied within a relatively narrow range between 3 and 9 ms across species, whereas cross-brain conduction times for the median axon diameters differed more substantially between 11 and 38 ms. Nonetheless, for both size classes of axons, an increase in diameter does not entirely compensate for the delay in interhemispheric transmission time that accompanies larger brain size. Such biophysical constraints on the processing speed of axons conveyed by the CC may play an important role in the evolution of hemispheric asymmetry.


2017 ◽  
Vol 27 (10) ◽  
pp. 1542-1548.e4 ◽  
Author(s):  
José Esquivelzeta Rabell ◽  
Kadir Mutlu ◽  
João Noutel ◽  
Pamela Martin del Olmo ◽  
Sebastian Haesler

2020 ◽  
pp. 155005942095748 ◽  
Author(s):  
Tommaso Bocci ◽  
Davide Baloscio ◽  
Roberta Ferrucci ◽  
Lucia Briscese ◽  
Alberto Priori ◽  
...  

Background and Rationale Hyperkinetic movement disorders represent a heterogeneous group of diseases, different from a genetic and clinical perspective. In the past, neurophysiological approaches provided different, sometimes contradictory findings, pointing to an impaired cortical inhibition as a common electrophysiological marker. Our aim was to evaluate changes in interhemispheric communication in patients with idiopathic cervical dystonia (ICD) and spinocerebellar ataxias (SCAs). Materials and Methods Eleven patients with ICD, 7 with genetically confirmed SCA2 or SCA3, and 10 healthy volunteers were enrolled. The onset latency and duration of the ipsilateral silent period (iSPOL and iSPD, respectively), as well as the so-called transcallosal conduction time (TCT), were then recorded from the abductor pollicis brevis of the right side using an 8-shaped focal coil with wing diameters of 70 mm; all these parameters were evaluated and compared among groups. In SCAs, changes in neurophysiological measures were also correlated to the mutational load. Results iSPD was significantly shorter in patients with SCA2 and SCA3, when compared both to control and ICD ( P < .0001); iSPOL and TCT were prolonged in SCAs patients ( P < .001). Changes in iSPD, iSPOL, and TCT in SCAs are significantly correlated with the mutational load ( P = .01, P = .02, and P = .002, respectively). Discussion This is the first study to assess changes in interhemispheric communication in patients with SCAs and ICD, using a transcranial magnetic stimulation protocol. Together with previous data in Huntington’s disease, we suggest that these changes may underlie, at least in part, a common disease mechanism of polyglutamine disorders.


Sign in / Sign up

Export Citation Format

Share Document