scholarly journals Analysis of Listeria using exogenous volatile organic compound metabolites and their detection by static headspace–multi-capillary column–gas chromatography–ion mobility spectrometry (SHS–MCC–GC–IMS)

2017 ◽  
Vol 409 (17) ◽  
pp. 4247-4256 ◽  
Author(s):  
Carl Taylor ◽  
Fraser Lough ◽  
Stephen P. Stanforth ◽  
Edward C. Schwalbe ◽  
Ian A. Fowlis ◽  
...  
2018 ◽  
Vol 90 (13) ◽  
pp. 7972-7981 ◽  
Author(s):  
Sofie Bosch ◽  
Sofia el Manouni el Hassani ◽  
James A. Covington ◽  
Alfian N. Wicaksono ◽  
Marije K. Bomers ◽  
...  

2021 ◽  
Author(s):  
Wenyao Zhu ◽  
Frank Benkwitz ◽  
Bahareh Sarmadi ◽  
Paul Kilmartin

A new quantitative method based on static headspace−gas chromatography−ion mobility spectrometry (SHS−GC−IMS) is proposed, which enables the simultaneous quantification of multiple aroma compounds in wine. The method was first evaluated for its stability and the necessity of using internal standards as a quality control measure. The two major hurdles in applying GC-IMS in quantification studies, namely, non-linearity and multiple ion species, were also investigated using the Boltzmann function and generalized additive model (GAM) as potential solutions. Metrics characterizing the model performance, including root mean squared error, bias, limit of detection, limit of quantification, repeatability, reproducibility, and recovery were investigated. Both non-linear fitting methods, Boltzmann function and GAM, were able to return desirable analytical outcomes with an acceptable range of error. Potential pitfalls that would cause inaccurate quantification i.e., effects of ethanol content and competitive ionization, were also discussed. The performance of the SHS-GC-IMS method was subsequently compared against a currently established method, namely, GC-MS, using actual wine samples. These findings provide an initial validation of a GC-IMS-based quantification method, as well as a starting point for further enhancing the analytical scope of GC-IMS.


2007 ◽  
Vol 7 (3) ◽  
pp. 8755-8793 ◽  
Author(s):  
T. G. Karl ◽  
T. J. Christian ◽  
R. J. Yokelson ◽  
P. Artaxo ◽  
W. Min Hao ◽  
...  

Abstract. Volatile Organic Compound (VOC) emissions from fires in tropical forest fuels were quantified using Proton-Transfer-Reaction Mass Spectrometry (PTRMS), Fourier Transformation Infrared Spectroscopy (FTIR) and gas chromatography (GC) coupled to PTRMS (GC-PTR-MS). We investigated VOC emissions from 19 controlled laboratory fires at the USFS Fire Sciences Laboratory and 16 fires during an intensive airborne field campaign during the peak of the burning season in Brazil in 2004. The VOC emissions were dominated by oxygenated VOCs (OVOC) (OVOC/NMHC ~4:1, NMHC: non-methane hydrocarbons) The specificity of the PTR-MS instrument, which measures the mass to charge ratio of VOCs ionized by H3O+ ions, was validated by gas chromatography and by intercomparing in-situ measurements with those obtained from an open path FTIR instrument. Emission ratios for methyl vinyl ketone, methacrolein, crotonaldehyde, acrylonitrile and pyrrole were measured in the field for the first time. Our measurements show a higher contribution of OVOCs than previously assumed for modeling purposes. Comparison of fresh (<15 min) and aged (>1hour-1day) smoke suggests altered emission ratios due to gas phase chemistry for acetone but not for acetaldehyde and methanol. Emission ratios for numerous, important, reactive VOCs with respect to acetonitrile (a biomass burning tracer) are presented.


Sign in / Sign up

Export Citation Format

Share Document