emission ratios
Recently Published Documents


TOTAL DOCUMENTS

147
(FIVE YEARS 34)

H-INDEX

28
(FIVE YEARS 4)

2021 ◽  
Vol 9 ◽  
Author(s):  
Cheng-Ling Kuo ◽  
Earle Williams ◽  
Toru Adachi ◽  
Kevin Ihaddadene ◽  
Sebastien Celestin ◽  
...  

Recent efforts to compare the sprite ratios with theoretical results have not been successfully resolved due to a lack of theoretical results for sprite streamers in varying altitudes. Advances in the predicted emission ratios of sprite streamers with a simple analytic equation have opened up the possibility for direct comparisons of theoretical results with sprite observations. The study analyzed the blue-to-red ratios measured by the ISUAL array photometer with the analytical expression for the sprite emission ratio derived from the modeling of downward sprite streamers. Our statistical studies compared sprite halos and carrot sprites where the sprite halos showed fair agreement with the predicted ratios from the sprite streamer simulation. But carrot sprites had lower emission ratios. Their estimated electric field has a lower bound of greater than 0.4 times the conventional breakdown electric field (Ek). It was consistent with the results of remote electromagnetic field measurements for short delayed or big/bright sprites. An unexpectedly lower ratio in carrot sprites occurred since sprite beads or glow in carrot sprites may exist and contribute additional red emission.


2021 ◽  
pp. 118451
Author(s):  
Balint Alfoldy ◽  
Mohamed M. Mahfouz ◽  
Asta Gregorič ◽  
Matic Ivančič ◽  
Irena Ježek ◽  
...  

2021 ◽  
pp. 100110
Author(s):  
Janne Hakkarainen ◽  
Monika E. Szelag ◽  
Iolanda Ialongo ◽  
Christian Retscher ◽  
Tomohiro Oda ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
pp. 147-162
Author(s):  
Rutambhara Joshi ◽  
Dantong Liu ◽  
Eiko Nemitz ◽  
Ben Langford ◽  
Neil Mullinger ◽  
...  

Abstract. Black carbon (BC) forms an important component of particulate matter globally, due to its impact on climate, the environment and human health. Identifying and quantifying its emission sources are critical for effective policymaking and achieving the desired reduction in air pollution. In this study, we present the first direct measurements of urban BC fluxes using eddy covariance. The measurements were made over Beijing within the UK-China Air Pollution and Human Health (APHH) winter 2016 and summer 2017 campaigns. In both seasons, the mean measured BC mass (winter: 5.49 ng m−2 s−1, summer: 6.10 ng m−2 s−1) and number fluxes (winter: 261.25 particles cm−2 s−1, summer: 334.37 particles cm−2 s−1) were similar. Traffic was determined to be the dominant source of the BC fluxes measured during both seasons. The total BC emissions within the 2013 Multi-resolution Emission Inventory for China (MEIC) are on average too high compared to measured fluxes by a factor of 58.8 (winter) and 47.2 (summer). Only a comparison with the MEIC transport sector shows that emissions are also larger (factor of 37.5 in winter and 37.7 in summer) than the measured flux. Emission ratios of BC ∕ NOx and BC ∕ CO are comparable to vehicular emission control standards implemented in January 2017 for gasoline (China 5) and diesel (China V) engines, indicating a reduction of BC emissions within central Beijing, and extending this to a larger area would further reduce total BC concentrations.


Open Physics ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 477-485
Author(s):  
Xuelin Zhang ◽  
Junjie Zhou ◽  
Weidong Fu ◽  
Lei Chen

Abstract Based on the first principle, this paper studies the optical properties of Ni, Mo, CoO, and Cr2O3 according to the Materials Studio software. It is found that the absorptivity of Ni is low, while Ni has low emissivity. Hence, it can be used to reduce emissivity. The absorption rate of CoO is very high. Therefore, Ni and CoO are very suitable to be composed to make a solar selective absorption coating with high absorptivity and low emissivity. The mass ratio of Ni and CoO has a greater impact on the optical properties of the composite material, so the absorption–emission ratios of the composite material Ni–CoO at different mass ratios are calculated. The absorption–emission ratio is the highest when the mass ratio is 1:1, and the performance is the best, which is in good agreement with the result of the experiment. And we hope that our method will provide some help for the study of solar selective absorption composite coatings.


2020 ◽  
Vol 20 (21) ◽  
pp. 12813-12851
Author(s):  
Erik Lutsch ◽  
Kimberly Strong ◽  
Dylan B. A. Jones ◽  
Thomas Blumenstock ◽  
Stephanie Conway ◽  
...  

Abstract. We present a multiyear time series of column abundances of carbon monoxide (CO), hydrogen cyanide (HCN), and ethane (C2H6) measured using Fourier-transform infrared (FTIR) spectrometers at 10 sites affiliated with the Network for the Detection of Atmospheric Composition Change (NDACC). Six are high-latitude sites: Eureka, Ny-Ålesund, Thule, Kiruna, Poker Flat, and St. Petersburg, and four are midlatitude sites: Zugspitze, Jungfraujoch, Toronto, and Rikubetsu. For each site, the interannual trends and seasonal variabilities of the CO time series are accounted for, allowing background column amounts to be determined. Enhancements above the seasonal background were used to identify possible wildfire pollution events. Since the abundance of each trace gas emitted in a wildfire event is specific to the type of vegetation burned and the burning phase, correlations of CO to the long-lived wildfire tracers HCN and C2H6 allow for further confirmation of the detection of wildfire pollution. A GEOS-Chem tagged CO simulation with Global Fire Assimilation System (GFASv1.2) biomass burning emissions was used to determine the source attribution of CO concentrations at each site from 2003 to 2018. For each detected wildfire pollution event, FLEXPART back-trajectory simulations were performed to determine the transport times of the smoke plume. Accounting for the loss of each species during transport, the enhancement ratios of HCN and C2H6 with respect to CO were converted to emission ratios. We report mean emission ratios with respect to CO for HCN and C2H6 of 0.0047 and 0.0092, respectively, with a standard deviation of 0.0014 and 0.0046, respectively, determined from 23 boreal North American wildfire events. Similarly, we report mean emission ratios for HCN and C2H6 of 0.0049 and 0.0100, respectively, with a standard deviation of 0.0025 and 0.0042, respectively, determined from 39 boreal Asian wildfire events. The agreement of our emission ratios with literature values illustrates the capability of ground-based FTIR measurements to quantify biomass burning emissions. We provide a comprehensive dataset that quantifies HCN and C2H6 emission ratios from 62 wildfire pollution events. Our dataset provides novel emission ratio estimates, which are sparsely available in the published literature, particularly for boreal Asian sources.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiamin Ou ◽  
Zhijiong Huang ◽  
Zbigniew Klimont ◽  
Guanglin Jia ◽  
Shaohui Zhang ◽  
...  

Abstract This study seeks to estimate how global supply chain relocates emissions of tropospheric ozone precursors and its impacts in shaping ozone formation. Here we show that goods produced in China for foreign markets lead to an increase of domestic non-methane volatile organic compounds (NMVOCs) emissions by 3.5 million tons in 2013; about 13% of the national total or, equivalent to half of emissions from European Union. Production for export increases concentration of NMVOCs (including some carcinogenic species) and peak ozone levels by 20–30% and 6–15% respectively, in the coastal areas. It contributes to an estimated 16,889 (3,839–30,663, 95% CI) premature deaths annually combining the effects of NMVOCs and ozone, but could be reduced by nearly 40% by closing the technology gap between China and EU. Export demand also alters the emission ratios between NMVOCs and nitrogen oxides and hence the ozone chemistry in the east and south coast.


2020 ◽  
Vol 20 (20) ◽  
pp. 12033-12045
Author(s):  
Haeyoung Lee ◽  
Edward J. Dlugokencky ◽  
Jocelyn C. Turnbull ◽  
Sepyo Lee ◽  
Scott J. Lehman ◽  
...  

Abstract. To understand the Korean Peninsula's carbon dioxide (CO2) emissions and sinks as well as those of the surrounding region, we used 70 flask-air samples collected during May 2014 to August 2016 at Anmyeondo (AMY; 36.53∘ N, 126.32∘ E; 46 m a.s.l.) World Meteorological Organization (WMO) Global Atmosphere Watch (GAW) station, located on the west coast of South Korea, for analysis of observed 14C in atmospheric CO2 as a tracer of fossil fuel CO2 contribution (Cff). Observed 14C ∕ C ratios in CO2 (reported as Δ values) at AMY varied from −59.5 ‰ to 23.1 ‰, with a measurement uncertainty of ±1.8 ‰. The derived mean value Cff of (9.7±7.8) µmol mol−1 (1σ) is greater than that found in earlier observations from Tae-Ahn Peninsula (TAP; 36.73∘ N, 126.13∘ E; 20 m a.s.l., 28 km away from AMY) of (4.4±5.7) µmol mol−1 from 2004 to 2010. The enhancement above background mole fractions of sulfur hexafluoride (Δx(SF6)) and carbon monoxide (Δx(CO)) correlate strongly with Cff (r>0.7) and appear to be good proxies for fossil fuel CO2 at regional and continental scales. Samples originating from the Asian continent had greater Δx(CO) : Cff(RCO) values, (29±8) to (36±2) nmol µmol−1, than in Korean Peninsula local air ((8±2) nmol µmol−1). Air masses originating in China showed (1.6±0.4) to (2.0±0.1) times greater RCO than a bottom-up inventory, suggesting that China's CO emissions are underestimated in the inventory, while observed RSF6 values are 2–3 times greater than inventories for both China and South Korea. However, RCO values derived from both inventories and observations have decreased relative to previous studies, indicating that combustion efficiency is increasing in both China and South Korea.


Sign in / Sign up

Export Citation Format

Share Document