ion mobility spectrometry
Recently Published Documents


TOTAL DOCUMENTS

1836
(FIVE YEARS 483)

H-INDEX

78
(FIVE YEARS 13)

2022 ◽  
Author(s):  
Roberto Fernandez-Maestre ◽  
Mahmoud Tabrizchi ◽  
Dairo Meza-Morelos

Ion mobility spectrometry is widely used for the detection of illegal substances and explosives in airports, ports, custom, some stations and many other important places. This task is usually complicated by false positives caused by overlapping the target peaks with that of interferents, commonly associated with samples of interest. Shift reagents (SR) are species that selectively change ion mobilities through adduction with analyte ions when they are introduced in IMS instruments. This characteristic can be used to discriminate false positives because the interferents and illegal substances respond differently to SR depending on the structure and size of analytes and their interaction energy with SR. This study demonstrates that ion mobility shifts upon introduction of SR depend, not only on the ion masses, but on the interaction energies of the ion:SR adducts. In this study, we introduced five different SRs using ESI-IMS-MS to study the effect of the interaction energy and size on mobility shifts. The mobility shifts showed a decreasing trend as the molecular weight increased for the series of compounds ethanolamine, valinol, serine, threonine, phenylalanine, tyrosine, tributylamine, tryptophan, desipramine, and tribenzylamine. It was proved that the decreasing trend was partially due to the inverse relation between the mobility and drift time and hence, the shift in drift time better reflects the pure effect of SR on the mobility of analytes. Yet the drift time shift exhibited a mild decrease with the mass of ions. Valinol pulled out from this trend because it had a low binding energy interaction with all the SR and, consequently, its clusters were short-lived. This short lifetime produced fewer collisions against the buffer gas and a drift time shorter compared to those of ions of similar molecular weight. Analyte ion:SR interactions were calculated using Gaussian. IMS with the introduction of SR could be the choice for the free-interferents detection of illegal drugs, explosives, and biological and warfare agents. The suppression of false positives could facilitate the transit of passengers and cargos, rise the confiscation of illicit substances, and save money and distresses due to needless delays. Keywords: Adduction, ion mobility spectrometry, mass spectrometry, shift reagent, valinol, buffer gas modifier


Author(s):  
Yueqi Wang ◽  
Yanyan Wu ◽  
Yingying Shen ◽  
Chunsheng Li ◽  
Yongqiang Zhao ◽  
...  

Chinese fermented mandarin fish (Siniperca chuatsi) have unique aroma characteristics that are appreciated by local consumers. In this study, electronic nose (E-nose) and gas chromatography–ion mobility spectrometry analyses were combined to establish a volatile fingerprint of fermented mandarin fish during fermentation. Clear separation of the data allowed mandarin fish samples at different fermentation stages to be distinguishing using E-nose analysis. Forty-three volatile organic compounds were identified during fermentation. Additionally, partial least squares discrimination analysis was performed to screen for different VOC metabolites in the fermented mandarin fish; the levels of six VOCs changed significantly during fermentation (variable importance in projection >1; p < 0.05). Three VOCs, i.e., hexanal-D, nonanal, and limonene were identified as potential biomarkers for fermentation. This study provided a theoretical basis for flavor real-time monitoring and quality control of traditional mandarin fish fermentation.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 234
Author(s):  
Wojciech Fabianowski ◽  
Mirosław Maziejuk ◽  
Monika Szyposzyńska ◽  
Monika Wiśnik-Sawka

The article presents a technique of differential ion mobility spectrometry (DMS) applicable to the detection and identification of volatile organic compounds (VOCs) from such categories as n-alkanes, alcohols, acetate esters, ketones, botulinum toxin, BTX, and fluoro- and chloro-organic compounds. A possibility of mixture identification using only the DMS spectrometer is analyzed, and several examples are published for the first time. An analysis of different compounds and their mechanisms of fragmentation, influence on effective ion temperature, and high electric field intensity is discussed.


2021 ◽  
Author(s):  
Christian Ieritano ◽  
J. C. Yves Le Blanc ◽  
Bradley B Schneider ◽  
Justine R Bissonnette ◽  
Alexander Haack ◽  
...  

Author(s):  
Christian Ieritano ◽  
J. C. Yves Le Blanc ◽  
Bradley B Schneider ◽  
Justine R Bissonnette ◽  
Alexander Haack ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document