Paper-based nuclease protection assay with on-chip sample pretreatment for point-of-need nucleic acid detection

2020 ◽  
Vol 412 (13) ◽  
pp. 3051-3061 ◽  
Author(s):  
Eka Noviana ◽  
Sidhartha Jain ◽  
Josephine Hofstetter ◽  
Brian J. Geiss ◽  
David S. Dandy ◽  
...  
Author(s):  
Alain Laurent ◽  
Arnaud Burr ◽  
Thibault Martin ◽  
Frédéric Lasnet ◽  
Sébastien Hauser ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kanako Saito ◽  
Yuri Ota ◽  
Dieter M. Tourlousse ◽  
Satoko Matsukura ◽  
Hirotsugu Fujitani ◽  
...  

AbstractDroplet microfluidics has emerged as a powerful technology for improving the culturing efficiency of environmental microorganisms. However, its widespread adoption has been limited due to considerable technical challenges, especially related to identification and manipulation of individual growth-positive droplets. Here, we combined microfluidic droplet technology with on-chip “fluorescent nucleic acid probe in droplets for bacterial sorting” (FNAP-sort) for recovery of growth-positive droplets and droplet microdispensing to establish an end-to-end workflow for isolation and culturing of environmental microbes. As a proof-of-concept, we demonstrate the ability of our technique to yield high-purity cultures of rare microorganisms from a representative complex environmental microbiome. As our system employs off-the-shelf commercially available equipment, we believe that it can be readily adopted by others and may thus find widespread use toward culturing the high proportion of as-of-yet uncultured microorganisms in different biomes.


Open Medicine ◽  
2007 ◽  
Vol 2 (3) ◽  
pp. 271-279 ◽  
Author(s):  
Koray Ergunay ◽  
Gulcin Altinok ◽  
Bora Gurel ◽  
Ahmet Pinar ◽  
Arzu Sungur ◽  
...  

AbstractIntrauterine Parvovirus B19 infections may cause fetal anemia, non-immune hydrops fetalis or abortion. This study focuses on the pathogenic role of Parvovirus B19 in non-immune hydrops fetalis at Hacettepe University, a major reference hospital in Turkey. Twenty-two cases of non-immune hydrops fetalis were retrospectively selected out of a total of 431 hydrops fetalis specimens from the Department of Pathology archieves. Paraffine embedded tissue sections from placental and liver tissues from each case were evaluated by histopathology, immunohistochemistry, nested PCR and commercial quantitative Real-time PCR. Viral DNA was detected in placental tissues by Real-time PCR in 2 cases (2/22, 9.1%) where histopathology also revealed changes suggestive of Parvovirus B19 infection. No significant histopathologic changes were observed for the remaining sections. Nested PCR that targets the VP1 region of the viral genome and immunohistochemistry for viral capsid antigens were negative for all cases. As a result, Parvovirus B19 is identified as the etiologic agent for the development of non-immune hydrops fetalis for 9.1% of the cases in Hacettepe University, Turkey. Real-time PCR is observed to be an effective diagnostic tool for nucleic acid detection from paraffine embedded tissues. Part of this study was presented as a poster at XIIIth International Congress of Virology, San Francisco, USA (Abstract V-572).


Sign in / Sign up

Export Citation Format

Share Document