scholarly journals Multiple regression models and Artificial Neural Network (ANN) as prediction tools of changes in overall quality during the storage of spreadable processed Gouda cheese

2019 ◽  
Vol 245 (11) ◽  
pp. 2539-2547 ◽  
Author(s):  
J. Stangierski ◽  
D. Weiss ◽  
A. Kaczmarek

Abstract The aim of the study was to compare the ability of multiple linear regression (MLR) and Artificial Neural Network (ANN) to predict the overall quality of spreadable Gouda cheese during storage at 8 °C, 20 °C and 30 °C. The ANN used five factors selected by Principal Component Analysis, which was used as input data for the ANN calculation. The datasets were divided into three subsets: a training set, a validation set, and a test set. The multiple regression models were highly significant with high determination coefficients: R2 = 0.99, 0.87 and 0.87 for 8, 20 and 30 °C, respectively, which made them a useful tool to predict quality deterioration. Simultaneously, the artificial neural networks models with determination coefficient of R2 = 0.99, 0.96 and 0.96 for 8, 20 and 30 °C, respectively were built. The models based on ANNs with higher values of determination coefficients and lower RMSE values proved to be more accurate. The best fit of the model to the experimental data was found for processed cheese stored at 8 °C.

2020 ◽  
Vol 10 (2) ◽  
pp. 154-162
Author(s):  
Engin Özdemir ◽  
Didem Eren Sarici

Background: The calorific value is the most important and effective factors of lignites in terms of energy resources. Humidity, ash content, volatile matter and sulfur content are the main factors affecting lignite's calorific values. Objective: Determination of calorific value is a process that takes time and cost for businesses. Therefore, estimating the calorific value from the developed models by using other parameters will benefit enterprises in term of time, cost and labor. Method: In this study calorific values were estimated by using artificial neural network and multiple regression models by using lignite data of 30 different regions. As input parameters, humidity, ash content and volatile matter values are used. In addition, the mean absolute percentage error and the significance coefficient values were determined. Results: Mean absolute percentage error values were found to be below 10%. There is a strong relationship between calorific values and other properties (R2> 90). Conclusion: As a result, artificial neural network and multiple regression models proposed in this study was shown to successfully estimate the calorific value of lignites without performing laboratory analyses.


2011 ◽  
Vol 366 ◽  
pp. 103-107 ◽  
Author(s):  
Bo Zhao

The artificial neural network and multiple regression models have been developed to predict the evenness of cotton ring yarn with process parameters such as front roller speed, spindle speed, nip gauge, back draft zone time and roving twist. The efficiencies of prediction of the two models have been experimentally verified, and the predicted evennesses of cotton ring yarns from both the models have been compared statistically. An attempt has been made to study the effect of process parameters on yarn evenness. The MSE and mean absolute error of ANN modelare lower than that of multiple regression model. The results show that the performances of prediction of ANN models are more accurate than those of multiple regression models.


Author(s):  
Manami Barthakur ◽  
Tapashi Thakuria ◽  
Kandarpa Kumar Sarma

In this work, a simplified Artificial Neural Network (ANN) based approach for recognition of various objects is explored using multiple features. The objective is to configure and train an ANN to be capable of recognizing an object using a feature set formed by Principal Component Analysis (PCA), Frequency Domain and Discrete Cosine Transform (DCT) components. The idea is to use these varied components to form a unique hybrid feature set so as to capture relevant details of objects for recognition using a ANN which for the work is a Multi Layer Perceptron (MLP) trained with (error) Back Propagation learning.


2021 ◽  
Author(s):  
Jean-François Verne

Abstract In this paper, we propose to analyze the motion of the Lebanese GDP over the period 1950-2019. This macroeconomic aggregate reveals large fluctuations notably during the civil war period (1975-1990). By estimating the Lyapunov exponents with the Artificial Neural Network (ANN) procedure, we show that this series exhibits a strange attractor generated by a chaotic dynamic and we use the embedding procedure to shed in light the bizarre structure of such a series. Thus, the ANN method gives better results regarding prediction than other linear regression models and allows to fit with accuracy the chaotic motion followed by the Lebanese GDP in the phase space.


2021 ◽  
Vol 11 (17) ◽  
pp. 8240
Author(s):  
Cid Mathew Santiago Adolfo ◽  
Hassan Chizari ◽  
Thu Yein Win ◽  
Salah Al-Majeed

With its potential, extensive data analysis is a vital part of biomedical applications and of medical practitioner interpretations, as data analysis ensures the integrity of multidimensional datasets and improves classification accuracy; however, with machine learning, the integrity of the sources is compromised when the acquired data pose a significant threat in diagnosing and analysing such information, such as by including noisy and biased samples in the multidimensional datasets. Removing noisy samples in dirty datasets is integral to and crucial in biomedical applications, such as the classification and prediction problems using artificial neural networks (ANNs) in the body’s physiological signal analysis. In this study, we developed a methodology to identify and remove noisy data from a dataset before addressing the classification problem of an artificial neural network (ANN) by proposing the use of the principal component analysis–sample reduction process (PCA–SRP) to improve its performance as a data-cleaning agent. We first discuss the theoretical background to this data-cleansing methodology in the classification problem of an artificial neural network (ANN). Then, we discuss how the PCA is used in data-cleansing techniques through a sample reduction process (SRP) using various publicly available biomedical datasets with different samples and feature sizes. Lastly, the cleaned datasets were tested through the following: PCA–SRP in ANN accuracy comparison testing, sensitivity vs. specificity testing, receiver operating characteristic (ROC) curve testing, and accuracy vs. additional random sample testing. The results show a significant improvement in the classification of ANNs using the developed methodology and suggested a recommended range of selectivity (Sc) factors for typical cleaning and ANN applications. Our approach successfully cleaned the noisy biomedical multidimensional datasets and yielded up to an 8% increase in accuracy with the aid of the Python language.


Sign in / Sign up

Export Citation Format

Share Document