scholarly journals Ripples in Graphene: A Variational Approach

2020 ◽  
Vol 379 (3) ◽  
pp. 915-954
Author(s):  
Manuel Friedrich ◽  
Ulisse Stefanelli

Abstract Suspended graphene samples are observed to be gently rippled rather than being flat. In Friedrich et al. (Z Angew Math Phys 69:70, 2018), we have checked that this nonplanarity can be rigorously described within the classical molecular-mechanical frame of configurational-energy minimization. There, we have identified all ground-state configurations with graphene topology with respect to classes of next-to-nearest neighbor interaction energies and classified their fine nonflat geometries. In this second paper on graphene nonflatness, we refine the analysis further and prove the emergence of wave patterning. Moving within the frame of Friedrich et al. (2018), rippling formation in graphene is reduced to a two-dimensional problem for one-dimensional chains. Specifically, we show that almost minimizers of the configurational energy develop waves with specific wavelength, independently of the size of the sample. This corresponds remarkably to experiments and simulations.

2003 ◽  
Vol 01 (04) ◽  
pp. 465-477 ◽  
Author(s):  
MICHAEL M. WOLF ◽  
FRANK VERSTRAETE ◽  
J. IGNACIO CIRAC

This article reviews and extends recent results concerning entanglement and frustration in multipartite systems which have some symmetry with respect to the ordering of the particles. Starting point of the discussion are Bell inequalities: their relation to frustration in classical systems and their satisfaction for quantum states which have a symmetric extension. We then discussed how more general global symmetries of multipartite systems constrain the entanglement between two neighboring particles. We prove that maximal entanglement (measured in terms of the entanglement of formation) is always attained for the ground state of a certain nearest neighbor interaction Hamiltonian having the considered symmetry with the achievable amount of entanglement being a function of the ground state energy. Systems of Gaussian states, i.e. quantum harmonic oscillators, are investigated in more detail and the results are compared to what is known about ordered qubit systems.


2019 ◽  
Vol 33 (17) ◽  
pp. 1950178
Author(s):  
Mohammad Khorrami ◽  
Amir Aghamohammadi

A system of nearest-neighbor interaction on a one-dimensional lattice is investigated, which has a quasi-stationary (and position-dependent) temperature profile. The rates of heat transfer and entropy change, as well as the diffusion equation for the temperature are studied. A q-state Potts model, and its special case, a two-state Ising model, are considered as an example.


1975 ◽  
Vol 53 (6) ◽  
pp. 637-647 ◽  
Author(s):  
D. A. Pink ◽  
Vijay Sachdeva

We have investigated the two magnon localized states of a one dimensional Heisenberg ferromagnet the Hamiltonian of which is made up of nearest neighbor and next nearest neighbor isotropic bilinear and biquadratic exchange terms, and a single ion anisotropy term. We have restricted our choice of parameters so that the ground state at T = 0 is the fully aligned ferromagnetic state and we have used the thermodynamic Green functions where the averages have been evaluated in the ground state so that our results are good for [Formula: see text]. We have evaluated the probabilities of finding two spin deviations a distance n apart when the system is in a localized state described by total wave vector q. We have (a) compared the effects of ferromagnetic and antiferromagnetic next nearest neighbor exchange, (b) found that localized modes can lie below or above the two free magnon band depending upon the sign and magnitude of the biquadratic exchange, (c) found that in certain cases two spin deviations appear to behave like objects interacting only via a soft core, and (d) found that modes can have a large single ion component when the single ion anisotropy is zero.


2006 ◽  
Vol 06 (01) ◽  
pp. 1-21 ◽  
Author(s):  
PETER W. BATES ◽  
HANNELORE LISEI ◽  
KENING LU

We consider a one-dimensional lattice with diffusive nearest neighbor interaction, a dissipative nonlinear reaction term and additive independent white noise at each node. We prove the existence of a compact global random attractor within the set of tempered random bounded sets. An interesting feature of this is that, even though the spatial domain is unbounded and the solution operator is not smoothing or compact, pulled back bounded sets of initial data converge under the forward flow to a random compact invariant set.


Sign in / Sign up

Export Citation Format

Share Document