Population structure of Brachidontes pharaonis (P. Fisher, 1870) (Bivalvia, Mytilidae) in the Mediterranean Sea, and evolution of a novel mtDNA polymorphism

2006 ◽  
Vol 150 (1) ◽  
pp. 89-101 ◽  
Author(s):  
Margherita Sirna Terranova ◽  
Sabrina Lo Brutto ◽  
Marco Arculeo ◽  
Jeffry B. Mitton
2014 ◽  
Vol 281 (1795) ◽  
pp. 20141558 ◽  
Author(s):  
Marie Louis ◽  
Michael C. Fontaine ◽  
Jérôme Spitz ◽  
Erika Schlund ◽  
Willy Dabin ◽  
...  

Environmental conditions can shape genetic and morphological divergence. Release of new habitats during historical environmental changes was a major driver of evolutionary diversification. Here, forces shaping population structure and ecotype differentiation (‘pelagic’ and ‘coastal’) of bottlenose dolphins in the North-east Atlantic were investigated using complementary evolutionary and ecological approaches. Inference of population demographic history using approximate Bayesian computation indicated that coastal populations were likely founded by the Atlantic pelagic population after the Last Glacial Maxima probably as a result of newly available coastal ecological niches. Pelagic dolphins from the Atlantic and the Mediterranean Sea likely diverged during a period of high productivity in the Mediterranean Sea. Genetic differentiation between coastal and pelagic ecotypes may be maintained by niche specializations, as indicated by stable isotope and stomach content analyses, and social behaviour. The two ecotypes were only weakly morphologically segregated in contrast to other parts of the World Ocean. This may be linked to weak contrasts between coastal and pelagic habitats and/or a relatively recent divergence. We suggest that ecological opportunity to specialize is a major driver of genetic and morphological divergence. Combining genetic, ecological and morphological approaches is essential to understanding the population structure of mobile and cryptic species.


2019 ◽  
Vol 35 (2) ◽  
pp. 436-443
Author(s):  
Silvia Livi ◽  
Teresa Romeo ◽  
Sabina De Innocentiis ◽  
Claudia Greco ◽  
Pietro Battaglia ◽  
...  

2011 ◽  
Vol 279 (1726) ◽  
pp. 129-138 ◽  
Author(s):  
Silvia Casabianca ◽  
Antonella Penna ◽  
Elena Pecchioli ◽  
Antoni Jordi ◽  
Gotzon Basterretxea ◽  
...  

The toxin-producing microbial species Alexandrium minutum has a wide distribution in the Mediterranean Sea and causes high biomass blooms with consequences on the environment, human health and coastal-related economic activities. Comprehension of algal genetic differences and associated connectivity is fundamental to understand the geographical scale of adaptation and dispersal pathways of harmful microalgal species. In the present study, we combine A. minutum population genetic analyses based on microsatellites with indirect connectivity ( C i ) estimations derived from a general circulation model of the Mediterranean sea. Our results show that four major clusters of genetically homogeneous groups can be identified, loosely corresponding to four regional seas: Adriatic, Ionian, Tyrrhenian and Catalan. Each of the four clusters included a small fraction of mixed and allochthonous genotypes from other Mediterranean areas, but the assignment to one of the four clusters was sufficiently robust as proved by the high ancestry coefficient values displayed by most of the individuals (>84%). The population structure of A. minutum on this scale can be explained by microalgal dispersion following the main regional circulation patterns over successive generations. We hypothesize that limited connectivity among the A. minutum populations results in low gene flow but not in the erosion of variability within the population, as indicated by the high gene diversity values. This study represents a first and new integrated approach, combining both genetic and numerical methods, to characterize and interpret the population structure of a toxic microalgal species. This approach of characterizing genetic population structure and connectivity at a regional scale holds promise for the control and management of the harmful algal bloom events in the Mediterranean Sea.


2013 ◽  
Vol 71 (2) ◽  
pp. 391-397 ◽  
Author(s):  
Jordi Viñas ◽  
Núria Sanz ◽  
Luis Peñarrubia ◽  
Rosa-Maria Araguas ◽  
José-Luis García-Marín ◽  
...  

Abstract Viñas, J., Sanz, N., Peñarrubia, L., Araguas, R-M., García-Marín, J-L., Roldán, M-I., and Pla, C. 2014. Genetic population structure of European anchovy in the Mediterranean Sea and the Northeast Atlantic Ocean using sequence analysis of the mitochondrial DNA control region. – ICES Journal of Marine Science, 71: 391–397. The European anchovy (Engraulis encrasicolus) exhibits a complex population structure in the Mediterranean Sea and Northeast Atlantic Ocean. To resolve the population genetic structure of this species, we surveyed sequence variability in the mitochondrial (mtDNA) control region in samples (n = 563) from 13 locations in the Northeast Atlantic, the Bay of Biscay, and the Mediterranean Sea. Based on pairwise ΦSTs, SAMOVA, and multidimensional scaling, a complicated population structure composed of multiple populations emerged. Combining these results with those from previous population studies based on mitochondrial and nuclear markers, we identified nine genetically differentiated European anchovy populations: (i) Canary Islands; (ii) Cádiz; (iii) Alborán Sea; (iv) Garona; (v) Arcachon and Donostia; (vi) a large population in the northwestern Mediterranean, including Cadaqués, Gulf of Lyon, Elba, and Sicily; (vii) southern Adriatic; (viii) northern Adriatic; and (ix) Aegean Sea. We suggest that independent management strategies should be implemented for each genetically differentiated population, and, in cases where several fisheries stocks are recognized within an area of genetic homogeneity, each stock should be managed separately.


2004 ◽  
Vol 68 (S3) ◽  
pp. 163-170 ◽  
Author(s):  
Gianfranco D'Onghia ◽  
Domingo Lloris ◽  
Letizia Sion ◽  
Francesca Capezzuto ◽  
Mary Labropoulou

Sign in / Sign up

Export Citation Format

Share Document