scholarly journals Generalized flatness constants, spanning lattice polytopes, and the Gromov width

Author(s):  
Gennadiy Averkov ◽  
Johannes Hofscheier ◽  
Benjamin Nill

AbstractIn this paper we motivate some new directions of research regarding the lattice width of convex bodies. We show that convex bodies of sufficiently large width contain a unimodular copy of a standard simplex. Following an argument of Eisenbrand and Shmonin, we prove that every lattice polytope contains a minimal generating set of the affine lattice spanned by its lattice points such that the number of generators (and the lattice width of their convex hull) is bounded by a constant which only depends on the dimension. We also discuss relations to recent results on spanning lattice polytopes and how our results could be viewed as the beginning of the study of generalized flatness constants. Regarding symplectic geometry, we point out how the lattice width of a Delzant polytope is related to upper and lower bounds on the Gromov width of its associated symplectic toric manifold. Throughout, we include several open questions.

Author(s):  
N. A. Balonin ◽  
M. B. Sergeev ◽  
J. Seberry ◽  
O. I. Sinitsyna

Introduction: The Hadamard conjecture about the existence of Hadamard matrices in all orders multiple of 4, and the Gauss problem about the number of points in a circle are among the most important turning points in the development of mathematics. They both stimulated the development of scientific schools around the world with an immense amount of works. There are substantiations that these scientific problems are deeply connected. The number of Gaussian points (Z3 lattice points) on a spheroid, cone, paraboloid or parabola, along with their location, determines the number and types of Hadamard matrices.Purpose: Specification of the upper and lower bounds for the number of Gaussian points (with odd coordinates) on a spheroid depending on the problem size, in order to specify the Gauss theorem (about the solvability of quadratic problems in triangular numbers by projections onto the Liouville plane) with estimates for the case of Hadamard matrices. Methods: The authors, in addition to their previous ideas about proving the Hadamard conjecture on the base of a one-to-one correspondence between orthogonal matrices and Gaussian points, propose one more way, using the properties of generalized circles on Z3 .Results: It is proved that for a spheroid, the lower bound of all Gaussian points with odd coordinates is equal to the equator radius R, the upper limit of the points located above the equator is equal to the length of this equator L=2πR, and the total number of points is limited to 2L. Due to the spheroid symmetry in the sector with positive coordinates (octant), this gives the values of R/8 and L/4. Thus, the number of Gaussian points with odd coordinates does not exceed the border perimeter and is no less than the relative share of the sector in the total volume of the figure.Practical significance: Hadamard matrices associated with lattice points have a direct practical significance for noise-resistant coding, compression and masking of video information.


1992 ◽  
Vol 62 (3) ◽  
pp. 285-295 ◽  
Author(s):  
Ekkehard Krätzel ◽  
Werner Nowak
Keyword(s):  

1999 ◽  
Vol 51 (2) ◽  
pp. 225-249 ◽  
Author(s):  
U. Betke ◽  
K. Böröczky

AbstractLet M be a convex body such that the boundary has positive curvature. Then by a well developed theory dating back to Landau and Hlawka for large λ the number of lattice points in λM is given by G(λM) = V(λM) + O(λd−1−ε(d)) for some positive ε(d). Here we give for general convex bodies the weaker estimatewhere SZd (M) denotes the lattice surface area of M. The term SZd is optimal for all convex bodies and o(λd−1) cannot be improved in general. We prove that the same estimate even holds if we allow small deformations of M.Further we deal with families {Pλ} of convex bodies where the only condition is that the inradius tends to infinity. Here we havewhere the convex body K satisfies some simple condition, V(Pλ; K; 1) is some mixed volume and S(Pλ) is the surface area of Pλ.


1953 ◽  
Vol 5 ◽  
pp. 261-270 ◽  
Author(s):  
Harvey Cohn

The consideration of relative extrema to correspond to the absolute extremum which is the critical lattice has been going on for some time. As far back as 1873, Korkine and Zolotareff [6] worked with the ellipsoid in hyperspace (i.e., with quadratic forms), and later Minkowski [8] worked with a general convex body in two or three dimensions. They showed how to find critical lattices by selection from among a finite number of relative extrema. They were aided by the long-recognized premise that only a finite number of lattice points can enter into consideration [1] when one deals with lattices “admissible to convex bodies.”


1975 ◽  
Vol 48 (2) ◽  
pp. 110 ◽  
Author(s):  
P. R. Scott
Keyword(s):  

2011 ◽  
Vol 36 (3) ◽  
pp. 462-467 ◽  
Author(s):  
Benjamin Nill ◽  
Günter M. Ziegler

Sign in / Sign up

Export Citation Format

Share Document