Experimental study on the heat transfer and pressure drop of a cross-flow heat exchanger with different pin–fin arrays

2011 ◽  
Vol 47 (9) ◽  
pp. 1133-1142 ◽  
Author(s):  
Isak Kotcioglu ◽  
Sinan Caliskan ◽  
Senol Baskaya
2013 ◽  
Vol 22 (2) ◽  
pp. 120-127
Author(s):  
Jong-Min Kim ◽  
Jinsu Kim ◽  
Byeonghun Yu ◽  
Sungmin Kum ◽  
Chang-Eon Lee ◽  
...  

2018 ◽  
Vol 225 ◽  
pp. 01023
Author(s):  
T.M. Yusof ◽  
M.F. Basrawi ◽  
A. Shahrani ◽  
H. Ibrahim

Ground heat exchanger is an exciting technique to reduce energy consumption in building especially in hot climate countries. Implementation of GHE for commercial unit in Malaysia is almost none in record. Thus, performance study of the GHE in Malaysia is crucial to be conducted either experimentally or numerically. Therefore, this paper presents the performance of GHE in term of effectiveness, outlet temperature and rate of heat transfer based on mathematical model. The model is developed based on cross flow heat exchanger with one fluid unmixed. There are two variable parameter used in the analysis which is effectiveness and flowrate of the air for 25 meter length of a PVC pipe. Three effectiveness values which is 0.8, 0.9 and 0.99 have been analysed in this study. Meanwhile, flowrate of air is ranging from 0.02 to 0.2 kg/s. Results show that flowrate at 0.02 kg/s gives great temperature reduction in the pipe compared with higher flowrate. However, flowrate of 0.2 kg/s produces higher cooling potential. Characteristic of the GHE for the rate of heat transfer with 80, 90 and 99 percent effectiveness also have been developed and it has been found that effectiveness of 0.9 provide good combination between flowrate and the rate of heat transfer for 25 meter length of the pipe


1999 ◽  
Vol 121 (1) ◽  
pp. 110-117 ◽  
Author(s):  
A. Muley ◽  
R. M. Manglik

Experimental heat transfer and isothermal pressure drop data for single-phase water flows in a plate heat exchanger (PHE) with chevron plates are presented. In a single-pass U-type counterflow PHE, three different chevron plate arrangements are considered: two symmetric plate arrangements with β = 30 deg/30 deg and 60 deg/60 deg, and one mixed-plate arrangement with β = 30 deg/60 deg. For water (2 < Pr < 6) flow rates in the 600 < Re < 104 regime, data for Nu and f are presented. The results show significant effects of both the chevron angle β and surface area enlargement factor φ. As β increases, and compared to a flat-plate pack, up to two to five times higher Nu are obtained; the concomitant f, however, are 13 to 44 times higher. Increasing φ also has a similar, though smaller effect. Based on experimental data for Re a 7000 and 30 deg ≤ β ≤ 60 deg, predictive correlations of the form Nu = C1,(β) D1(φ) Rep1(β)Pr1/3(μ/μw)0.14 and f = C2(β) D2(φ) Rep2(β) are devised. Finally, at constant pumping power, and depending upon Re, β, and φ, the heat transfer is found to be enhanced by up to 2.8 times that in an equivalent flat-plate channel.


Sign in / Sign up

Export Citation Format

Share Document