Theoretical study on bubble formation and flow condensation in downflow channel with horizontal gas injection

2018 ◽  
Vol 54 (11) ◽  
pp. 3329-3343 ◽  
Author(s):  
Kang Zhu ◽  
Yanzhong Li ◽  
Jiaojiao Wang ◽  
Yuan Ma ◽  
Lei Wang ◽  
...  
2016 ◽  
Vol 95 (2) ◽  
pp. 372-385 ◽  
Author(s):  
Miguel A. Balzán ◽  
R. Sean Sanders ◽  
Brian A. Fleck

Author(s):  
J. Carrera ◽  
R. N. Parthasarathy ◽  
S. R. Gollahalli

The effects of buoyancy on the flow regimes of submerged gas injection were studied in this investigation. A capillary tube submerged in water was used for gas injection in microgravity and terrestrial conditions, and the resulting flow regimes and bubble sizes were documented. The effects of liquid co-flow and reduced surface tension were also analyzed. Under reduced gravity, three flow regimes were observed over the range of conditions tested. At low gas flow rates, the bubbles did not detach from the injector, forming an interconnected bubble cluster that adhered to the injector. Single bubbles started detaching and moving away from the injector when the Weber number reached a value around 3. At gas flow rates corresponding to a Weber number value of 10, the bubble coalescence regime was observed near the injector. It was found that the absence of buoyancy prevented the formation of the jetting regime. For all gas throughputs, the co-flowing liquid aided the detachment of the bubbles, resulting in the generation of more uniform bubbles than in quiescent liquids. The presence of co-flow resulted in a smaller bubble size accompanied by an increased frequency of bubble formation. Reduced surface tension produced a similar effect, resulting in smaller bubbles.


2021 ◽  
Author(s):  
Shiyong Zeng ◽  
Ping Zhu ◽  
Valerie A Izzo ◽  
Haolong Li ◽  
Zhonghe Jiang

Abstract Massive gas injection (MGI) experiments have been carried out in many tokamaks to study disruption dynamics and mitigation schemes. Two events often observed in those experiments are the excitation of the m = 2, n = 1 magnetohydrodynamic (MHD) mode, and the formation of cold bubble structure in the temperature distribution before the thermal quench (TQ). Here m is the poloidal mode number, n the toroidal mode number. The physics mechanisms underlying those phenomena, however, have not been entirely clear. In this work, our recent NIMROD simulations of the MGI process in a tokamak have reproduced the main features of both events, which has allowed us to examine and establish the causal relation between them. In these simulations, the 3/1 and 2/1 islands are found to form successively after the arrival of impurity ion cold front at the corresponding q = 3 and q = 2 rational surfaces. At the interface between impurity and plasma, a local thin current sheet forms due to an enhanced local pressure gradient and moves inward following the gas cold front, this may contribute to the formation of a dominant 2/1 mode. Following the growth of the 2/1 tearing mode, the impurity penetration into the core region inside the q = 2 surface gives rise to the formation of the cold bubble temperature structure and initiates the final TQ. A subdominant 1/1 mode developed earlier near the q = 1 surface alone does not cause such a cold bubble formation, however, the exact manner of the preceding impurity penetration depends on the nature of the 1/1 mode: kink-tearing or quasi-interchange.


Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1643
Author(s):  
Jorge E. Rivera-Salinas ◽  
Karla M. Gregorio-Jáuregui ◽  
Alejandro Cruz-Ramírez ◽  
Víctor H. Gutierréz-Pérez ◽  
José A. Romero-Serrano ◽  
...  

This paper presents a computational study on bottom gas injection in a cylindrical tank. The bubble formation at submerged orifices, bubble rising, and interactions between bubbles and bubbles with the free surface were studied using the conservative level set method (CLSM). Since the gas injection is an important technique in various fields and this process is quite complicated, the scenario was chosen to quantify the efficacy of the CLSM to describe the gas-liquid complex interactions with fast changes in the surface tension force and buoyancy force. The simulation accuracy is verified with the grid convergence index (GCI) approach and Richardson Extrapolation (RE) and is validated by comparing the numerical results with experimental observations, theoretical equations, and published data. The results show that the CLSM accurately reproduces the bubble formation frequency, and that it can handle complicated bubble shapes. Moreover, it captures the challenging phenomena of interaction between bubbles and free surface, the jet of liquid produced when bubbles break through the free surface, and the rupture of the film of liquid. Therefore, the CLSM is a robust numerical technique to describe gas-liquid complex interactions, and it is suited to simulate the gas injection operation.


Sign in / Sign up

Export Citation Format

Share Document