MHD simulations of cold bubble formation from 2/1 tearing mode during massive gas injection in a tokamak

2021 ◽  
Author(s):  
Shiyong Zeng ◽  
Ping Zhu ◽  
Valerie A Izzo ◽  
Haolong Li ◽  
Zhonghe Jiang

Abstract Massive gas injection (MGI) experiments have been carried out in many tokamaks to study disruption dynamics and mitigation schemes. Two events often observed in those experiments are the excitation of the m = 2, n = 1 magnetohydrodynamic (MHD) mode, and the formation of cold bubble structure in the temperature distribution before the thermal quench (TQ). Here m is the poloidal mode number, n the toroidal mode number. The physics mechanisms underlying those phenomena, however, have not been entirely clear. In this work, our recent NIMROD simulations of the MGI process in a tokamak have reproduced the main features of both events, which has allowed us to examine and establish the causal relation between them. In these simulations, the 3/1 and 2/1 islands are found to form successively after the arrival of impurity ion cold front at the corresponding q = 3 and q = 2 rational surfaces. At the interface between impurity and plasma, a local thin current sheet forms due to an enhanced local pressure gradient and moves inward following the gas cold front, this may contribute to the formation of a dominant 2/1 mode. Following the growth of the 2/1 tearing mode, the impurity penetration into the core region inside the q = 2 surface gives rise to the formation of the cold bubble temperature structure and initiates the final TQ. A subdominant 1/1 mode developed earlier near the q = 1 surface alone does not cause such a cold bubble formation, however, the exact manner of the preceding impurity penetration depends on the nature of the 1/1 mode: kink-tearing or quasi-interchange.

2016 ◽  
pp. 514-516
Author(s):  
Martin Bruhns

The massecuite circulates in a loop within the evaporating crystallizing vessel. The massecuite flows upwards through the heating tubes. In the room above the calandria the massecuite flow changes its direction to radial inwards and then to vertical downwards. An impeller in the central tube forces the circulation. Below the calandria the main direction of flow is radially outwards until threads of the massecuite stream enter the heating tubes in upwards direction. Within the tubes heat is transferred to the massecuite. At low temperature differences between heating steam and massecuite and higher levels of the massecuite in the crystallizer vapor bubbles are not found in the tubes. Vapor bubbles can be formed at a massecuite level in the crystallizer where the temperature of the massecuite is higher than the local boiling temperature of water, which depends on the local pressure (including the static pressure of the massecuite at this point) and the boiling point elevation of the mother liquor. The surface tension of the liquid is a resistance against the bubble formation, which has to be overcome by the local superheating i.e. the part of the enthalpy of the massecuite exceeding the local boiling temperature. The formation and the flow of the bubbles change the density of the massecuite/bubbles mixture and has an influence on the massecuite flow. The formation of a vapour bubble is connected with a local drop of the massecuite temperature which changes the local supersaturation. Today the heat transfer into the magma is quite well known but the process of bubble formation is quite unknown. Some basic considerations about the formation of bubbles and its influence on local supersaturation based on calculation of heat and mass balances and models of bubble formation are be given and discussed. Experiments for basic investigations are proposed.


2022 ◽  
Author(s):  
Yue Ming ◽  
Deng Zhou ◽  
Jinfang Wang

Abstract The effect of equilibrium poloidal flow and pressure gradient on the m/n = 2/1 (m is the poloidal mode number and n is the toroidal mode number) tearing mode instability for tokamak plasmas is investigated. Based on the condition of ≠0 ( is plasma pressure), the radial part of motion equation is derived and approximately solved for large poloidal mode numbers (m). By solving partial differential equation (Whittaker equation) containing second order singularity, the tearing mode stability index Δ′ is obtained. It is shown that, the effect of equilibrium poloidal flow and pressure gradient has the adverse effect on the tearing mode instability when the pressure gradient is nonzero. The poloidal equilibrium flow with pressure perturbation partially reduces the stability of the classical tearing mode. But the larger pressure gradient in a certain poloidal flow velocity range can abate the adverse influence of equilibrium poloidal flow and pressure gradient. The numerical results do also indicate that the derivative of pressure gradient has a significant influence on the determination of instability region of the poloidal flow with pressure perturbation.


Author(s):  
Konstantinos Lyras ◽  
Siaka Dembele ◽  
C. Madhav Rao Vendra ◽  
Jennifer Wen

Flash boiling is the rapid phase change of a pressurised fluid that emerges in ambient conditions below its vapourpressure. Flashing can occur either inside or outside the nozzle depending on the local pressure and geometry and the bubble formation leads to interfacial interactions that eventually influence the emerging spray. Lagrangian methods which exist in literature to simulate the flash atomisation and inter-phase heat transfer employ many sim- plifying assumptions. Typically, sub-models used for the break-up, collisions and evaporation introduce an extensive empiricism that might result in unrealistic predictions for cases like flashing. In this study, a fully Eulerian approach is selected employing the Σ − Y model proposed by Vallet and Borghi. The model tracks liquid structures of any shape and computes the spray characteristics comprising a modified version for the transport equation of the sur- face density. The main goal of this study is to investigate the performance of this model in flash boiling liquids using the Homogeneous Relaxation Model (HRM) developed by Downar-Zapolski, a model capable of capturing the heat transfer under sudden depressurisation conditions accounting for the non-equilibrium vapour generation. The model in this present study considers that the instantaneous quality would relax to the equilibrium value over a given timescale which is calculated using the flow field values. A segregated approach linking the HRM and Σ − Y is implemented in a compressible formulation in an attempt to quantify the effects of flash boiling in the spray dynamics. The developed model is naturally implemented in RANS in a dedicated solver HRMSonicELSAFoam. Results from simulations of two-phase jets of different subcooled fluids through sharp-edged orifices show that the proposed approach can accurately simulate the primary atomisation and give reliable predictions for the droplet sizes and distribution. Strong effects of the flashing and turbulent mixing on the jet are demonstrated. The model istested for turbulent flows within small nozzles and was developed within the open source code OpenFOAM.DOI: http://dx.doi.org/10.4995/ILASS2017.2017.4667


2016 ◽  
Vol 95 (2) ◽  
pp. 372-385 ◽  
Author(s):  
Miguel A. Balzán ◽  
R. Sean Sanders ◽  
Brian A. Fleck

2018 ◽  
Vol 54 (11) ◽  
pp. 3329-3343 ◽  
Author(s):  
Kang Zhu ◽  
Yanzhong Li ◽  
Jiaojiao Wang ◽  
Yuan Ma ◽  
Lei Wang ◽  
...  

Author(s):  
J. Carrera ◽  
R. N. Parthasarathy ◽  
S. R. Gollahalli

The effects of buoyancy on the flow regimes of submerged gas injection were studied in this investigation. A capillary tube submerged in water was used for gas injection in microgravity and terrestrial conditions, and the resulting flow regimes and bubble sizes were documented. The effects of liquid co-flow and reduced surface tension were also analyzed. Under reduced gravity, three flow regimes were observed over the range of conditions tested. At low gas flow rates, the bubbles did not detach from the injector, forming an interconnected bubble cluster that adhered to the injector. Single bubbles started detaching and moving away from the injector when the Weber number reached a value around 3. At gas flow rates corresponding to a Weber number value of 10, the bubble coalescence regime was observed near the injector. It was found that the absence of buoyancy prevented the formation of the jetting regime. For all gas throughputs, the co-flowing liquid aided the detachment of the bubbles, resulting in the generation of more uniform bubbles than in quiescent liquids. The presence of co-flow resulted in a smaller bubble size accompanied by an increased frequency of bubble formation. Reduced surface tension produced a similar effect, resulting in smaller bubbles.


Sign in / Sign up

Export Citation Format

Share Document