The association between microhaemorrhages and post - traumatic functional outcome in the chronic phase after mild traumatic brain injury

2017 ◽  
Vol 59 (10) ◽  
pp. 963-969 ◽  
Author(s):  
S. de Haan ◽  
J. C. de Groot ◽  
B. Jacobs ◽  
J. van der Naalt
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Catherine D. Chong ◽  
Jianwei Zhang ◽  
Jing Li ◽  
Teresa Wu ◽  
Gina Dumkrieger ◽  
...  

Abstract Background/objective Changes in speech can be detected objectively before and during migraine attacks. The goal of this study was to interrogate whether speech changes can be detected in subjects with post-traumatic headache (PTH) attributed to mild traumatic brain injury (mTBI) and whether there are within-subject changes in speech during headaches compared to the headache-free state. Methods Using a series of speech elicitation tasks uploaded via a mobile application, PTH subjects and healthy controls (HC) provided speech samples once every 3 days, over a period of 12 weeks. The following speech parameters were assessed: vowel space area, vowel articulation precision, consonant articulation precision, average pitch, pitch variance, speaking rate and pause rate. Speech samples of subjects with PTH were compared to HC. To assess speech changes associated with PTH, speech samples of subjects during headache were compared to speech samples when subjects were headache-free. All analyses were conducted using a mixed-effect model design. Results Longitudinal speech samples were collected from nineteen subjects with PTH (mean age = 42.5, SD = 13.7) who were an average of 14 days (SD = 32.2) from their mTBI at the time of enrollment and thirty-one HC (mean age = 38.7, SD = 12.5). Regardless of headache presence or absence, PTH subjects had longer pause rates and reductions in vowel and consonant articulation precision relative to HC. On days when speech was collected during a headache, there were longer pause rates, slower sentence speaking rates and less precise consonant articulation compared to the speech production of HC. During headache, PTH subjects had slower speaking rates yet more precise vowel articulation compared to when they were headache-free. Conclusions Compared to HC, subjects with acute PTH demonstrate altered speech as measured by objective features of speech production. For individuals with PTH, speech production may have been more effortful resulting in slower speaking rates and more precise vowel articulation during headache vs. when they were headache-free, suggesting that speech alterations were related to PTH and not solely due to the underlying mTBI.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mayra Bittencourt ◽  
Sebastián A. Balart-Sánchez ◽  
Natasha M. Maurits ◽  
Joukje van der Naalt

Self-reported complaints are common after mild traumatic brain injury (mTBI). Particularly in the elderly with mTBI, the pre-injury status might play a relevant role in the recovery process. In most mTBI studies, however, pre-injury complaints are neither analyzed nor are the elderly included. Here, we aimed to identify which individual pre- and post-injury complaints are potential prognostic markers for incomplete recovery (IR) in elderly patients who sustained an mTBI. Since patients report many complaints across several domains that are strongly related, we used an interpretable machine learning (ML) approach to robustly deal with correlated predictors and boost classification performance. Pre- and post-injury levels of 20 individual complaints, as self-reported in the acute phase, were analyzed. We used data from two independent studies separately: UPFRONT study was used for training and validation and ReCONNECT study for independent testing. Functional outcome was assessed with the Glasgow Outcome Scale Extended (GOSE). We dichotomized functional outcome into complete recovery (CR; GOSE = 8) and IR (GOSE ≤ 7). In total 148 elderly with mTBI (median age: 67 years, interquartile range [IQR]: 9 years; UPFRONT: N = 115; ReCONNECT: N = 33) were included in this study. IR was observed in 74 (50%) patients. The classification model (IR vs. CR) achieved a good performance (the area under the receiver operating characteristic curve [ROC-AUC] = 0.80; 95% CI: 0.74–0.86) based on a subset of only 8 out of 40 pre- and post-injury complaints. We identified increased neck pain (p = 0.001) from pre- to post-injury as the strongest predictor of IR, followed by increased irritability (p = 0.011) and increased forgetfulness (p = 0.035) from pre- to post-injury. Our findings indicate that a subset of pre- and post-injury physical, emotional, and cognitive complaints has predictive value for determining long-term functional outcomes in elderly patients with mTBI. Particularly, post-injury neck pain, irritability, and forgetfulness scores were associated with IR and should be assessed early. The application of an ML approach holds promise for application in self-reported questionnaires to predict outcomes after mTBI.


Author(s):  
Christopher Mares ◽  
Jehane H. Dagher ◽  
Mona Harissi-Dagher

AbstractThe most common symptom of post-concussive syndrome (PCS) is post-traumatic headache (PTH) accompanied by photophobia. Post-traumatic headache is currently categorized as a secondary headache disorder with a clinical phenotype described by its main features and resembling one of the primary headache disorders: tension, migraine, migraine-like cluster. Although PTH is often treated with medication used for primary headache disorders, the underlying mechanism for PTH has yet to be elucidated. The goal of this narrative literature review is to determine the current level of knowledge of these PTHs and photophobia in mild traumatic brain injury (mTBI) in order to guide further research and attempt to discover the underlying mechanism to both symptoms. The ultimate purpose is to better understand the pathophysiology of these symptoms in order to provide better and more targeted care to afflicted patients. A review of the literature was conducted using the databases CINAHL, EMBASE, PubMed. All papers were screened for sections on pathophysiology of PTH or photophobia in mTBI patients. Our paper summarizes current hypotheses. Although the exact pathophysiology of PTH and photophobia in mTBI remains to be determined, we highlight several interesting findings and avenues for future research, including central and peripheral explanations for PTH, neuroinflammation, cortical spreading depolarization and the role of glutamate excitotoxicity. We discuss the possible neuroanatomical pathways for photophobia and hypothesize a possible common pathophysiological basis between PTH and photophobia.


Sign in / Sign up

Export Citation Format

Share Document