Fibro-osseous lesions involving the brain: MRI

1999 ◽  
Vol 41 (1) ◽  
pp. 18-21 ◽  
Author(s):  
Dean Melville ◽  
Jiang Qian ◽  
David Millet ◽  
Curtis Nelson ◽  
Webster Pilcher ◽  
...  
Keyword(s):  
Author(s):  
Pooja Prabhu ◽  
A. K. Karunakar ◽  
Sanjib Sinha ◽  
N. Mariyappa ◽  
G. K. Bhargava ◽  
...  

AbstractIn a general scenario, the brain images acquired from magnetic resonance imaging (MRI) may experience tilt, distorting brain MR images. The tilt experienced by the brain MR images may result in misalignment during image registration for medical applications. Manually correcting (or estimating) the tilt on a large scale is time-consuming, expensive, and needs brain anatomy expertise. Thus, there is a need for an automatic way of performing tilt correction in three orthogonal directions (X, Y, Z). The proposed work aims to correct the tilt automatically by measuring the pitch angle, yaw angle, and roll angle in X-axis, Z-axis, and Y-axis, respectively. For correction of the tilt around the Z-axis (pointing to the superior direction), image processing techniques, principal component analysis, and similarity measures are used. Also, for correction of the tilt around the X-axis (pointing to the right direction), morphological operations, and tilt correction around the Y-axis (pointing to the anterior direction), orthogonal regression is used. The proposed approach was applied to adjust the tilt observed in the T1- and T2-weighted MR images. The simulation study with the proposed algorithm yielded an error of 0.40 ± 0.09°, and it outperformed the other existing studies. The tilt angle (in degrees) obtained is ranged from 6.2 ± 3.94, 2.35 ± 2.61, and 5 ± 4.36 in X-, Z-, and Y-directions, respectively, by using the proposed algorithm. The proposed work corrects the tilt more accurately and robustly when compared with existing studies.


BMC Neurology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chi Hyuk Oh ◽  
Jin San Lee

Abstract Background Cerebral microbleeds (CMBs) are small, rounded, dark-signal lesions on brain MRI that represent cerebral hemosiderin deposits resulting from prior microhemorrhages and are neuroimaging biomarkers of cerebral amyloid angiopathy (CAA). Here, we report a case of innumerable CMBs in a patient with hepatic encephalopathy underlying decompensated liver cirrhosis. Case presentation An 83-year-old woman diagnosed with hepatitis B virus-related liver cirrhosis 40 years before was referred to our neurology clinic for progressive disorientation of time and place, personality changes, and confusion with somnolence over 2 weeks. Based on the laboratory, neuroimaging, and electrophysiological findings, we diagnosed the patient with hepatic encephalopathy, and her symptoms recovered within 12 h after proper medical management. Brain MRI showed innumerable CMBs in the bilateral frontal, parietal, temporal, and occipital lobes. Since the distribution of CMBs in the patient was mainly corticosubcortical and predominantly in the posterior cortical regions, and the apolipoprotein E genotype was ε4/ε4, we speculated that CAA and hepatic encephalopathy coexisted in this patient. Conclusions We suggest that severe liver dysfunction associated with long-term decompensated liver cirrhosis may be related to an increased number of CMBs in the brain. Our findings indicate that decompensated liver cirrhosis may be a risk factor for the development of CMBs and corroborate a link between the liver and the brain.


2016 ◽  
Vol 4 (1) ◽  
pp. 139-141
Author(s):  
Ali Yilmaz ◽  
Zahir Kizilay ◽  
Ayca Ozkul ◽  
Bayram Çirak

BACKGROUND: The recurrent Heubner's artery is the distal part of the medial striate artery. Occlusion of the recurrent artery of Heubner, classically contralateral hemiparesis with fasciobrachiocrural predominance, is attributed to the occlusion of the recurrent artery of Heubner and is widely known as a stroke syndrome in adults. However, isolated occlusion of the deep perforating arteries following mild head trauma also occurs extremely rarely in childhood.CASE REPORT: Here we report the case of an 11-year-old boy with pure motor stroke. The brain MRI showed an acute ischemia in the recurrent artery of Heubner supply area following mild head trauma. His fasciobrachial hemiparesis and dysarthria were thought to be secondary to the stretching of deep perforating arteries leading to occlusion of the recurrent artery of Heubner.CONCLUSION: Post-traumatic pure motor ischemic stroke can be secondary to stretching of the deep perforating arteries especially in childhood.


2012 ◽  
Vol 11 (4) ◽  
pp. 124
Author(s):  
Jun-Hyung Lee ◽  
Soo-Ji Lee ◽  
Jin-Young Ahn ◽  
Jae-Hyeok Heo

2007 ◽  
Vol 65 (4a) ◽  
pp. 1040-1042 ◽  
Author(s):  
Jackson A. Gondim ◽  
Michele Schops ◽  
João Paulo Cavalcante ◽  
Erica Gomes

A 53 year-old woman presented a recurrent bifrontal headache of 2 years duration and bilateral progressive visual disturbance. The clinical and neurological examination showed a bilateral feet adactyly and bitemporal hemianopsia. The brain MRI demonstrated a Rathke's cleft cyst. The patient was operated by a transnasal endoscopic approach. It seems that this unusual association has never been described before.


2018 ◽  
Vol 40 (2) ◽  
pp. 354-364 ◽  
Author(s):  
Myriam G Jaarsma-Coes ◽  
Rashid Ghaznawi ◽  
Jeroen Hendrikse ◽  
Cornelis Slump ◽  
Theo D Witkamp ◽  
...  

Neurodegenerative and neurovascular diseases lead to heterogeneous brain abnormalities. A combined analysis of these abnormalities by phenotypes of the brain might give a more accurate representation of the underlying aetiology. We aimed to identify different MRI phenotypes of the brain and assessed the risk of future stroke and mortality within these subgroups. In 1003 patients (59 ± 10 years) from the Second Manifestations of ARTerial disease-Magnetic Resonance (SMART-MR) study, different quantitative 1.5T brain MRI markers were used in a hierarchical clustering analysis to identify 11 distinct subgroups with a different distribution in brain MRI markers and cardiovascular risk factors, and a different risk of stroke (Cox regression: from no increased risk compared to the reference group with relatively few brain abnormalities to HR = 10.34; 95% CI 3.80↔28.12 for the multi-burden subgroup) and mortality (from no increased risk compared to the reference group to HR = 4.00; 95% CI 2.50↔6.40 for the multi-burden subgroup). In conclusion, within a group of patients with manifest arterial disease, we showed that different MRI phenotypes of the brain can be identified and that these were associated with different risks of future stroke and mortality. These MRI phenotypes can possibly classify individual patients and assess their risk of future stroke and mortality.


QJM ◽  
2021 ◽  
Vol 114 (Supplement_1) ◽  
Author(s):  
Mohsen Saleh Elalfy ◽  
Fatma Soliman Elsayed Ebeid ◽  
Mohammed Ahmed Samir Ibrahim ◽  
Hanaa Midhat Abdel Gader Hussein

Abstract Background Sickle cell disease (SCD) is considered the most prevalent monogenic diseases worldwide. Iron overload is one of the major complications in those patients, especially who in need for frequent transfusion, affecting many organs including the brain. MRI is a valuable, reliable and non-invasive method for quantifying iron concentration in many organs as the liver and heart and it is now used for monitoring of the chelation therapy in SCD patients. Several studies began reporting differences in global cognitive function, particularly for children with SCD, they are at a high risk for neurocognitive impairment they often scored lower on general IQ measures than healthy children which is due to iron overload in brain tissue from the chronic transfusions which can lead to strokes and may be a silent stroke. Objective The current study assessed brain iron content (using R2* values) in the caudate and thalamic regions through quantitative brain MRI study in SCD patients in comparison to age and sex-matched healthy controls. Methods A case-control study recruited 32 patients with SCD and 11 healthy controls. Brain MRI study using multi-echo fast gradient echo sequence was done for all the patients and controls. Brain R2* values of both caudate and thalamic regions (right and left sides) were calculated for only 15 SCD patients and the 11 controls. All recruited SCD patients and controls were examined for the neurocognitive functions by these tests: Wechsler IV Intelligence Scale for Adult shows (Verbal, Perceptual, Memory, Processing and Total IQ), their all normal values between 90 – 110. Benton Visual Retention Test have cut of point at (> 4 or = 4). Those values are the same for the difference between the obtained correct and the expected correct, and the difference between the obtained error and expected error. Results The fifteen patient with SCD who underwent brain MRI were age and sex matched with the eleven healthy control (15 SCD patients: mean-age: 16.93 ± 3.41 years, 40.6% females and 11healthy controls: mean age: 18.73 ± 4.84 years, 54.5% females) were enrolled in the study. As regards the brain MRI, there was no statistically significant differences between SCD and control group in all regions of interests (p > 0.05). Our study showed that 72.7% of our SCD patients had under threshold TIQ scores. Also18% of the patients showed moderate anxiety, 9% mild anxiety and 9% showed severe anxiety. Conclusion The results of our study showed that even in cases of iron overload which affects vital organs as the liver, cardiac and brain iron overload don't occur.


2020 ◽  
Vol 10 (5) ◽  
pp. 183-184
Author(s):  
Rafael Ferreira Nascimento ◽  
Diogo Raposo André, ◽  
Fabiana Gouveia ◽  
Nancy Faria ◽  
Ana Paula Reis

Introduction: The authors describe a rare presentation of central nervous system cryptococcosis in an immunocompromised patient. Case description: An HIV-positive patient, with poor adherence to the treatment, presented with a seventeen days history of severe headache. On the neurological exam there was only evidence of neck stiffness, he had a CD4 count of 23 cells/μl and plasma HIV RNA viral loads of 364,000 copies/ml. Lumbar puncture revealed positive for cryptococcal antigen virus and so treatment with amphotericin B was started. During his admission the patient developed an expressive aphasia with visual hallucinations and the brain MRI revealed cerebral cryptococcomas. After 98 days of treatment general and neurological examination was normal and the patient was discharged home. Conclusion: This case highlights a rare and severe complication of Cryptococcus neoformans infection in immunocompromised patients.


Author(s):  
R. Pavidraa ◽  
R. Preethi ◽  
N. Sri Madhava Raja ◽  
P. Tamizharasi ◽  
B. Parvatha Varthini
Keyword(s):  

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
J. Patrick Neary ◽  
Jyotpal Singh ◽  
Jonathan P. Christiansen ◽  
Taylor A. Teckchandani ◽  
Kirsty L. Potter

We present a unique case study report of a male individual with a history of mild nonischaemic cardiomyopathy, with no ventricular ectopy, that at the age of 76 years sustained multiple concussions (i.e., mild traumatic brain injury) within a week of each other. Concussion symptoms included cognitive difficulties, “not feeling well,” lethargy, fatigue, and signs of depression. He was later medically diagnosed with postconcussion syndrome. The patient, WJT, was referred for cardiac and neurological assessment. Structural neuroimaging of the brain (MRI) was unremarkable, but electrocardiography (ECG) assessments using a 24-hour Holter monitor revealed significant incidence of ventricular ectopy (9.4%; 9,350/99,836 beats) over a period of 5–6 months after injury and then a further increase in ventricular ectopy to 18% (15,968/88,189 beats) during the subsequent 3 months. The patient was then prescribed Amiodarone 200 mg, and his ventricular ectopy and concussion symptoms completely resolved simultaneously within days. To the authors’ knowledge, our study is the first to show a direct link between observable and documented cardiac dysregulation and concussion symptomology. Our study has important implications for both cardiac patients and the patients that sustain a concussion, and if medically managed with appropriate pharmacological intervention, it can reverse ventricular ectopy and concussion symptomology. More research is warranted to investigate the mechanisms for this dramatic and remarkable change in cardiac and cerebral functions and to further explore the brain-heart interaction and the intricate autonomic interaction that exists between the extrinsic and intracardiac nervous systems.


Sign in / Sign up

Export Citation Format

Share Document