Natural language guided object retrieval in images
AbstractThe ability to understand the surrounding environment and being able to communicate with interacting humans are important functionalities for many automated systems where visual input (e.g., images, video) and natural language input (speech or text) have to be related to each other. Possible applications are automatic image caption generation, interactive surveillance systems, or human robot interaction. In this paper, we propose algorithms for automatic responses to natural language queries about an image. Our approach uses a predefined neural net for detection of bounding boxes and objects in images, spatial relations between bounding boxes are modeled with a neural net, the queries are analyzed with a syntactic parser, and algorithms to map natural language to properties in the images are introduced. The algorithms make use of semantic similarity and antonyms. We evaluate the performance of our approach with test users assessing the quality of our system’s generated answers.