scholarly journals Phosphatidylserine eversion regulated by phospholipid scramblase activated by TGF-β1/Smad signaling in the early stage of kidney stone formation

Urolithiasis ◽  
2021 ◽  
Author(s):  
Xiu Guo Gan ◽  
Hai Tao Xu ◽  
Zhi Hao Wang

AbstractThe mechanism underlying phosphatidylserine eversion in renal tubule cells following calcium oxalate-mediated damage remains unclear; therefore, we investigated the effects of TGF-β1/Smad signaling on phosphatidylserine eversion in the renal tubule cell membrane during the early stage of kidney stone development. In a rat model of early stage of calcium oxalate stone formation, phosphatidylserine eversion on the renal tubular cell membrane was detected by flow cytometry, and the expression of TGF-β1 (transforming growth factor-β1), Smad7, and phospholipid scramblase in the renal tubular cell membrane was measured by western blotting. We observed that the TGF-β1/Smad signaling pathway increased phosphatidylserine eversion at the organism level. The results of in vitro studies demonstrated that oxalate exposure to renal tubule cells induced TGF-β1 expression, increasing phospholipid scramblase activity and phosphatidylserine eversion in the renal tubule cell membrane. These results indicate that TGF-β1 stimulates phosphatidylserine eversion by increasing the phospholipid scramblase activity in the renal tubule cell membrane during the early stage of kidney stone development. The results of this study form a basis for further detailed research on the development of therapeutic agents that specifically treat urolithiasis and exert fewer adverse effects.

1977 ◽  
Vol 233 (4) ◽  
pp. F325-F332
Author(s):  
M. A. Linshaw ◽  
F. B. Stapleton ◽  
F. E. Cuppage ◽  
J. J. Grantham

Renal tubule cell volume is thought to be kept constant by a cation pump. When active transport is blocked, intracellular impermeant solutes cause cells to swell. Cell size is then determined by transmembrane hydrostatic and colloid osmotic forces. We studied the importance of passive transmembrane forces in determining cell size in isolated rabbit proximal straight tubules (PST). We blocked active solute transport with ouabain and evaluated subsequent changes in cell size by measuring outer diameter of nonperfused tubules. Tubules in a ouabain and 6 g/100 ml protein bath swelled only 40% above control. However, removal of the tubule basement membrane with collagenase dissipated a transmembrane hydrostatic pressure and caused more swelling. Final cell volume was determined largely by bath protein concentration. Tubules in ouabain and collagenase swelled enormously in hyponcotic protein, moderately in isoncotic protein, and could be shrunk below control in hyperoncotic protein. Intracellular colloid osmotic pressure was estimated to exceed 38 cmH20. We conclude that hydrostatic and colloid osmotic forces are major determinants of cell size in isolated PST treated with ouabain.


2002 ◽  
Vol 30 (6) ◽  
pp. 681-686 ◽  
Author(s):  
John C. Seely ◽  
Joseph K. Haseman ◽  
Abraham Nyska ◽  
Douglas C. Wolf ◽  
Jeffrey I. Everitt ◽  
...  

1980 ◽  
Vol 239 (6) ◽  
pp. F571-F577 ◽  
Author(s):  
M. A. Linshaw

Renal tubule cell volume is thought to be kept constant by a cation pump. Ouabain, by inhibiting Na+-K+-ATPase, blocks cation transport with resultant cell swelling, but the degree of swelling is less than expected were active cation transport completely inhibited. Although the relatively rigid tubule basement membrane may limit swelling of ouabain-treated tubules, some investigators have alternatively postulated that an energy-dependent ouabain-insensitive cation pump regulates cell size. This notion derives from studies of renal cortical slices in which metabolic inhibitors such as 2,4-dinitrophenol (DNP) cause more swelling than ouabain. We blocked cellular metabolism of isolated rabbit proximal straight tubules by adding metabolic inhibitors to or removing acetate and glucose (energy substrate) from the bathing medium and evaluated subsequent changes in cell size by measuring outer diameter of nonperfused tubules. In isotonic medium, cell volume increased 36% with addition of 10(-4) M ouabain, 40% with 10(-2) M DNP, 46% with 10(-3) M cyanide, 39% with ouabain + DNP + cyanide, and 37% with removal of bath substrate (P = NS). We conclude that renal tubule cell volume is not regulated by a unique-ouabain-insensitive cation pump.


Cryobiology ◽  
2021 ◽  
Vol 103 ◽  
pp. 181
Author(s):  
Heather E. Tomalty ◽  
Virginia K. Walker ◽  
Peter L. Davies

2003 ◽  
Vol 104 (s49) ◽  
pp. 55P-55P
Author(s):  
Susan M. Crail ◽  
Thomas J. Evans

Sign in / Sign up

Export Citation Format

Share Document