scholarly journals Cardiomyopathy of Friedreich’s Ataxia: Use of Mouse Models to Understand Human Disease and Guide Therapeutic Development

2011 ◽  
Vol 32 (3) ◽  
pp. 366-378 ◽  
Author(s):  
R. Mark Payne ◽  
P. Melanie Pride ◽  
Clifford M. Babbey
2021 ◽  
Author(s):  
Oscar A Campos ◽  
Narsis Attar ◽  
Nathan V Mallipeddi ◽  
Chen Cheng ◽  
Maria Vogelauer ◽  
...  

Disruptions to iron-sulfur (Fe-S) clusters, essential cofactors for a broad range of proteins, cause widespread cellular defects resulting in human disease. An underappreciated source of damage to Fe-S clusters are cuprous (Cu1+) ions. Since histone H3 enzymatically produces Cu1+ to support copper-dependent functions, we asked whether this activity could become detrimental to Fe-S clusters. Here, we report that histone H3-mediated Cu1+ toxicity is a major determinant of cellular Fe-S cluster quotient. Inadequate Fe-S cluster supply, either due to diminished assembly as occurs in Friedreich's Ataxia or defective distribution, causes severe metabolic and growth defects in S. cerevisiae. Decreasing Cu1+ abundance, through attenuation of histone cupric reductase activity or depletion of total cellular copper, restored Fe-S cluster-dependent metabolism and growth. Our findings reveal a novel interplay between chromatin and mitochondria in Fe-S cluster homeostasis, and a potential pathogenic role for histone enzyme activity and Cu1+ in diseases with Fe-S cluster dysfunction.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Liwei Weng ◽  
Laurent Laboureur ◽  
Qingqing Wang ◽  
Lili Guo ◽  
Peining Xu ◽  
...  

Abstract Mature frataxin is essential for the assembly of iron–sulfur cluster proteins including a number of mitochondrial enzymes. Reduced levels of mature frataxin (81-20) in human subjects caused by the genetic disease Friedreich’s ataxia results in decreased mitochondrial function, neurodegeneration, and cardiomyopathy. Numerous studies of mitochondrial dysfunction have been conducted using mouse models of frataxin deficiency. However, mouse frataxin that is reduced in these models, is assumed to be mature frataxin (78-207) by analogy with human mature frataxin (81-210). Using immunoaffinity purification coupled with liquid chromatography-high resolution tandem mass spectrometry, we have discovered that mature frataxin in mouse heart (77%), brain (86%), and liver (47%) is predominantly a 129-amino acid truncated mature frataxin (79-207) in which the N-terminal lysine residue has been lost. Mature mouse frataxin (78-207) only contributes 7–15% to the total frataxin protein present in mouse tissues. We have also found that truncated mature frataxin (79-207) is present primarily in the cytosol of mouse liver; whereas, frataxin (78-207) is primarily present in the mitochondria. These findings, which provide support for the role of extra-mitochondrial frataxin in the etiology of Friedreich’s ataxia, also have important implications for studies of mitochondrial dysfunction conducted in mouse models of frataxin deficiency.


1986 ◽  
Vol 25 (2) ◽  
pp. 84-91 ◽  
Author(s):  
E. Cassandro ◽  
F. Mosca ◽  
L. Sequino ◽  
F. A. De Falco ◽  
G. Campanella

Author(s):  
H.F. Gattiker ◽  
A. Davignon ◽  
A. Bozio ◽  
J. Batlle-Diaz ◽  
G. Geoffroy ◽  
...  

SUMMARY:Echocardiographic examination of 21 patients with Friedreich's ataxia (age 7 to 28 years) showed cardiac abnormalities in 90% of the cases. They were characterized by varying degrees of septal hypertrophy in 81%, left ventricular free wall hypertrophy in 61%, and a slight reduction of left ventricular internal dimension in 57% of the cases. Asymmetric septal hypertrophy (ASH) with a septal/left ventricular free wall ratio of over 1.3 was found in 29% of the cases, and systolic anterior motion (SAM) of the mitral valve in three patients. Two other patients showed evidence of a different type of cardiomyopathy with marked symmetric left ventricular hypertrophy and marked left ventricular enlargement.


Sign in / Sign up

Export Citation Format

Share Document