scholarly journals Erratum to: Diet Versus Phylogeny: a Comparison of Gut Microbiota in Captive Colobine Monkey Species

2017 ◽  
Vol 75 (2) ◽  
pp. 528-528 ◽  
Author(s):  
Vanessa L. Hale ◽  
Chia L. Tan ◽  
Kefeng Niu ◽  
Yeqin Yang ◽  
Rob Knight ◽  
...  
2017 ◽  
Vol 75 (2) ◽  
pp. 515-527 ◽  
Author(s):  
Vanessa L. Hale ◽  
Chia L. Tan ◽  
Kefeng Niu ◽  
Yeqin Yang ◽  
Rob Knight ◽  
...  

Nutrients ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 2638
Author(s):  
Claudia Barber ◽  
Marianela Mego ◽  
Carlos Sabater ◽  
Fernando Vallejo ◽  
Rogger Alvaro Bendezu ◽  
...  

Our aim was to determine the effect of diet on gut microbiota, digestive function and sensations, using an integrated clinical, metagenomics and metabolomics approach. We conducted a cross-over, randomised study on the effects of a Western-type diet versus a fibre-enriched Mediterranean diet. In 20 healthy men, each diet was administered for 2 weeks preceded by a 2-week washout diet. The following outcomes were recorded: (a) number of anal gas evacuations; (b) digestive sensations; (c) volume of gas evacuated after a probe meal; (d) colonic content by magnetic resonance imaging; (e) gut microbiota taxonomy and metabolic functions by shotgun sequencing of faecal samples; (f) urinary metabolites using untargeted metabolomics. As compared to a Western diet, the Mediterranean diet was associated with (i) higher number of anal gas evacuations, (ii) sensation of flatulence and borborygmi, (iii) larger volume of gas after the meal and (iv) larger colonic content. Despite the relatively little difference in microbiota composition between both diets, microbial metabolism differed substantially, as shown by urinary metabolite profiles and the abundance of microbial metabolic pathways. The effects of the diet were less evident in individuals with robust microbiotas (higher beta-diversity). To conclude, healthy individuals tolerate dietary changes with minor microbial modifications at the composition level but with remarkable variation in microbial metabolism.


2016 ◽  
Vol 48 (9) ◽  
pp. 1688-1698 ◽  
Author(s):  
REBECCA J. WELLY ◽  
TZU-WEN LIU ◽  
TERESE M. ZIDON ◽  
JOE L. ROWLES ◽  
YOUNG-MIN PARK ◽  
...  

Author(s):  
Sunmin Park ◽  
Sunna Kang ◽  
Da Sol Kim

Abstract. Folate and vitamin B12(V-B12) deficiencies are associated with metabolic diseases that may impair memory function. We hypothesized that folate and V-B12 may differently alter mild cognitive impairment, glucose metabolism, and inflammation by modulating the gut microbiome in rats with Alzheimer’s disease (AD)-like dementia. The hypothesis was examined in hippocampal amyloid-β infused rats, and its mechanism was explored. Rats that received an amyloid-β(25–35) infusion into the CA1 region of the hippocampus were fed either control(2.5 mg folate plus 25 μg V-B12/kg diet; AD-CON, n = 10), no folate(0 folate plus 25 μg V-B12/kg diet; AD-FA, n = 10), no V-B12(2.5 mg folate plus 0 μg V-B12/kg diet; AD-V-B12, n = 10), or no folate plus no V-B12(0 mg folate plus 0 μg V-B12/kg diet; AD-FAB12, n = 10) in high-fat diets for 8 weeks. AD-FA and AD-VB12 exacerbated bone mineral loss in the lumbar spine and femur whereas AD-FA lowered lean body mass in the hip compared to AD-CON(P < 0.05). Only AD-FAB12 exacerbated memory impairment by 1.3 and 1.4 folds, respectively, as measured by passive avoidance and water maze tests, compared to AD-CON(P < 0.01). Hippocampal insulin signaling and neuroinflammation were attenuated in AD-CON compared to Non-AD-CON. AD-FAB12 impaired the signaling (pAkt→pGSK-3β) and serum TNF-α and IL-1β levels the most among all groups. AD-CON decreased glucose tolerance by increasing insulin resistance compared to Non-AD-CON. AD-VB12 and AD-FAB12 increased insulin resistance by 1.2 and 1.3 folds, respectively, compared to the AD-CON. AD-CON and Non-AD-CON had a separate communities of gut microbiota. The relative counts of Bacteroidia were lower and those of Clostridia were higher in AD-CON than Non-AD-CON. AD-FA, but not V-B12, separated the gut microbiome community compared to AD-CON and AD-VB12(P = 0.009). In conclusion, folate and B-12 deficiencies impaired memory function by impairing hippocampal insulin signaling and gut microbiota in AD rats.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
EM Pferschy-Wenzig ◽  
K Koskinen ◽  
C Moissl-Eichinger ◽  
R Bauer

Sign in / Sign up

Export Citation Format

Share Document