human gut microbiota
Recently Published Documents





2022 ◽  
Vol 73 ◽  
pp. 81-87
Francesca Turroni ◽  
Christian Milani ◽  
Marco Ventura ◽  
Douwe van Sinderen

Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 234
Manman Liu ◽  
Qingqing Chen ◽  
Yalian Sun ◽  
Lingzhou Zeng ◽  
Hongchen Wu ◽  

Folate is a B-vitamin required for DNA synthesis, methylation, and cellular division, whose deficiencies are associated with various disorders and diseases. Currently, most folic acid used for fortification is synthesized chemically, causing undesirable side effects. However, using folate-producing probiotics is a viable option, which fortify folate in situ and regulate intestinal microbiota. In this study, the folate production potential of newly isolated strains from raw milk was analyzed by microbiological assay. Latilactobacillus sakei LZ217 showed the highest folate production in Folic Acid Assay Broth, 239.70 ± 0.03 ng/μL. The folate produced by LZ217 was identified as 5-methyltetrahydrofolate. LZ217 was tolerant to environmental stresses (temperature, pH, NaCl, and ethanol), and was resistant to gastrointestinal juices. Additionally, the in vitro effects of LZ217 on human gut microbiota were investigated by fecal slurry cultures. 16S rDNA gene sequencing indicated that fermented samples containing LZ217 significantly increased the abundance of phylum Firmicutes and genus Lactobacillus, Faecalibacterium, Ruminococcus 2, Butyricicoccus compared to not containing. Short-chain fatty acids (SCFAs) analysis revealed that LZ217 also increased the production of butyric acid by fermentation. Together, L. sakei LZ217 could be considered as a probiotic candidate to fortify folate and regulate intestinal microecology.

2022 ◽  
Vol 9 ◽  
Brian K. Trevelline ◽  
Andrew H. Moeller

In mammals, the composition of the gut microbiota is associated with host phylogenetic history, and host-lineage specific microbiota have been shown, in some cases, to contribute to fitness-related traits of their hosts. However, in primates, captivity can disrupt the native microbiota through a process of humanization in which captive hosts acquire gut microbiota constituents found in humans. Despite the potential importance of this process for the health of captive hosts, the degree to which captivity humanizes the gut microbiota of other mammalian taxa has not been explored. Here, we analyzed hundreds of published gut microbiota profiles generated from wild and captive hosts spanning seven mammalian families to investigate the extent of humanization of the gut microbiota in captivity across the mammalian phylogeny. Comparisons of these hosts revealed compositional convergence between captive mammal and human gut microbiota in the majority of mammalian families examined. This convergence was driven by a diversity of microbial lineages, including members of the Archaea, Clostridium, and Bacteroides. However, the gut microbiota of two families—Giraffidae and Bovidae—were remarkably robust to humanization in captivity, showing no evidence of gut microbiota acquisition from humans relative to their wild confamiliars. These results demonstrate that humanization of the gut microbiota is widespread in captive mammals, but that certain mammalian lineages are resistant to colonization by human-associated gut bacteria.

2022 ◽  
pp. 168-174
Cassandra Millet-Boureima ◽  
Kaylee Petraccione ◽  
Sara Nibar ◽  
Rebecca Hight ◽  
Wesley Caudle ◽  

Mireia Valles-Colomer ◽  
Rodrigo Bacigalupe ◽  
Sara Vieira-Silva ◽  
Shinya Suzuki ◽  
Youssef Darzi ◽  

AbstractAlthough the composition and functional potential of the human gut microbiota evolve over the lifespan, kinship has been identified as a key covariate of microbial community diversification. However, to date, sharing of microbiota features within families has mostly been assessed between parents and their direct offspring. Here we investigate the potential transmission and persistence of familial microbiome patterns and microbial genotypes in a family cohort (n = 102) spanning 3 to 5 generations over the same female bloodline. We observe microbiome community composition associated with kinship, with seven low abundant genera displaying familial distribution patterns. While kinship and current cohabitation emerge as closely entangled variables, our explorative analyses of microbial genotype distribution and transmission estimates point at the latter as a key covariate of strain dissemination. Highest potential transmission rates are estimated between sisters and mother–daughter pairs, decreasing with increasing daughter’s age and being higher among cohabiting pairs than those living apart. Although rare, we detect potential transmission events spanning three and four generations, primarily involving species of the genera Alistipes and Bacteroides. Overall, while our analyses confirm the existence of family-bound microbiome community profiles, transmission or co-acquisition of bacterial strains appears to be strongly linked to cohabitation.

Biochemistry ◽  
2021 ◽  
Yunjia Lai ◽  
Radhika Dhingra ◽  
Zhenfa Zhang ◽  
Louise M. Ball ◽  
Mark J. Zylka ◽  

Carmen García-Durán ◽  
Raquel Martínez-López ◽  
Lucía Monteoliva ◽  
Concha Gil

2021 ◽  
Vol 22 (24) ◽  
pp. 13440
Aleksandra Sędzikowska ◽  
Leszek Szablewski

The majority of the epithelial surfaces of our body, and the digestive tract, respiratory and urogenital systems, are colonized by a vast number of bacteria, archaea, fungi, protozoans, and viruses. These microbiota, particularly those of the intestines, play an important, beneficial role in digestion, metabolism, and the synthesis of vitamins. Their metabolites stimulate cytokine production by the human host, which are used against potential pathogens. The composition of the microbiota is influenced by several internal and external factors, including diet, age, disease, and lifestyle. Such changes, called dysbiosis, may be involved in the development of various conditions, such as metabolic diseases, including metabolic syndrome, type 2 diabetes mellitus, Hashimoto’s thyroidis and Graves’ disease; they can also play a role in nervous system disturbances, such as multiple sclerosis, Alzheimer’s disease, Parkinson’s disease, and depression. An association has also been found between gut microbiota dysbiosis and cancer. Our health is closely associated with the state of our microbiota, and their homeostasis. The aim of this review is to describe the associations between human gut microbiota and cancer, and examine the potential role of gut microbiota in anticancer therapy.

2021 ◽  
Vol 7 (12) ◽  
Sophie Marre ◽  
Cyrielle Gasc ◽  
Camille Forest ◽  
Yacine Lebbaoui ◽  
Pascale Mosoni ◽  

Targeting small parts of the 16S rDNA phylogenetic marker by metabarcoding reveals microorganisms of interest but cannot achieve a taxonomic resolution at the species level, precluding further precise characterizations. To identify species behind operational taxonomic units (OTUs) of interest, even in the rare biosphere, we developed an innovative strategy using gene capture by hybridization. From three OTU sequences detected upon polyphenol supplementation and belonging to the rare biosphere of the human gut microbiota, we revealed 59 nearly full-length 16S rRNA genes, highlighting high bacterial diversity hidden behind OTUs while evidencing novel taxa. Inside each OTU, revealed 16S rDNA sequences could be highly distant from each other with similarities down to 85 %. We identified one new family belonging to the order Clostridiales , 39 new genera and 52 novel species. Related bacteria potentially involved in polyphenol degradation have also been identified through genome mining and our results suggest that the human gut microbiota could be much more diverse than previously thought.

Samuel Piquer-Esteban ◽  
Susana Ruiz-Ruiz ◽  
Vicente Arnau ◽  
Wladimiro Diaz ◽  
Andrés Moya

Sign in / Sign up

Export Citation Format

Share Document