scholarly journals Elevated Temperature May Affect Nectar Microbes, Nectar Sugars, and Bumble Bee Foraging Preference

2021 ◽  
Author(s):  
Kaleigh A. Russell ◽  
Quinn S. McFrederick

Abstract Floral nectar, an important resource for pollinators, is inhabited by microbes such as yeasts and bacteria, which have been shown to influence pollinator preference. Dynamic and complex plant-pollinator-microbe interactions are likely to be affected by a rapidly changing climate, as each player has their own optimal growth temperatures and phenological responses to environmental triggers, such as temperature. To understand how warming due to climate change is influencing nectar microbial communities, we incubated a natural nectar microbial community at different temperatures and assessed the subsequent nectar chemistry and preference of the common eastern bumble bee, Bombus impatiens. The microbial community in floral nectar is often species-poor, and the cultured Brassica rapa nectar community was dominated by the bacterium Fructobacillus. Temperature increased the abundance of bacteria in the warmer treatment. Bumble bees preferred nectar inoculated with microbes, but only at the lower, ambient temperature. Warming therefore induced an increase in bacterial abundance which altered nectar sugars and led to significant differences in pollinator preference.

2019 ◽  
Vol 30 (3) ◽  
pp. 746-755 ◽  
Author(s):  
Avery L Russell ◽  
Tia-Lynn Ashman

Abstract Communication is often vital to the maintenance of mutualisms. In plant-pollinator mutualisms, plants signal pollinators via floral displays, composed of olfactory, visual, and other plant-derived cues. While plants are understood to be associated with microbes, only recently has the role of microbial (yeast and bacteria) inhabitants of flowers as intermediaries of plant-pollinator communication been recognized. Animals frequently use microbial cues to find resources, yet no study has examined whether microbes directly mediate learned and innate pollinator responses. Here, we asked whether microbes on the flower surface, independent of their modification of floral rewards, can mediate these key components of pollinator preference. In the field, we characterized flower and bumble bee microbial abundance, and in laboratory assays we tested whether bumble bees (Bombus impatiens) discriminated flowers on the basis of an experimental floral microbial community on the petals and whether microbe-derived chemicals were effective cues. Learning of microbial community cues was associative and reward context-dependent and mediated by microbial chemicals. Deconstructing the experimental microbial community showed bees innately avoided flowers with bacteria, but were undeterred by yeast. Microbial cues thus potentially facilitate dynamic communication between plants and pollinators such as bumble bees, especially as pollinator visitation can change flower microbiota. We suggest that the study of communication in mutualism generally would benefit by considering not only the multicellular eukaryote partners, but their microbial associates.


Insects ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 132 ◽  
Author(s):  
Anthony D. Vaudo ◽  
John F. Tooker ◽  
Harland M. Patch ◽  
David J. Biddinger ◽  
Michael Coccia ◽  
...  

Pollinator nutritional ecology provides insights into plant–pollinator interactions, coevolution, and the restoration of declining pollinator populations. Bees obtain their protein and lipid nutrient intake from pollen, which is essential for larval growth and development as well as adult health and reproduction. Our previous research revealed that pollen protein to lipid ratios (P:L) shape bumble bee foraging preferences among pollen host-plant species, and these preferred ratios link to bumble bee colony health and fitness. Yet, we are still in the early stages of integrating data on P:L ratios across plant and bee species. Here, using a standard laboratory protocol, we present over 80 plant species’ protein and lipid concentrations and P:L values, and we evaluate the P:L ratios of pollen collected by three bee species. We discuss the general phylogenetic, phenotypic, behavioral, and ecological trends observed in these P:L ratios that may drive plant–pollinator interactions; we also present future research questions to further strengthen the field of pollination nutritional ecology. This dataset provides a foundation for researchers studying the nutritional drivers of plant–pollinator interactions as well as for stakeholders developing planting schemes to best support pollinators.


Ecosphere ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
Avery L. Russell ◽  
María Rebolleda‐Gómez ◽  
Tierney Marie Shaible ◽  
Tia‐Lynn Ashman

RSC Advances ◽  
2020 ◽  
Vol 10 (15) ◽  
pp. 8692-8702 ◽  
Author(s):  
Assar Ali Shah ◽  
Chen Qian ◽  
Juanzi Wu ◽  
Zhiwei Liu ◽  
Salman Khan ◽  
...  

The inoculation of L. plantarum and natamycin influenced the fermentation quality. Natamycin and L. plantarum reduced the undesirable microbial community. During ensiling process, the LA and LABs was significantly enhanced.


2014 ◽  
Vol 39 (3) ◽  
pp. 334-342 ◽  
Author(s):  
BENOÎT GESLIN ◽  
MATHILDE BAUDE ◽  
FRANCOIS MALLARD ◽  
ISABELLE DAJOZ

BMC Genomics ◽  
2020 ◽  
Vol 21 (S6) ◽  
Author(s):  
Musfiqur Sazal ◽  
Kalai Mathee ◽  
Daniel Ruiz-Perez ◽  
Trevor Cickovski ◽  
Giri Narasimhan

Abstract Background Microbe-microbe and host-microbe interactions in a microbiome play a vital role in both health and disease. However, the structure of the microbial community and the colonization patterns are highly complex to infer even under controlled wet laboratory conditions. In this study, we investigate what information, if any, can be provided by a Bayesian Network (BN) about a microbial community. Unlike the previously proposed Co-occurrence Networks (CoNs), BNs are based on conditional dependencies and can help in revealing complex associations. Results In this paper, we propose a way of combining a BN and a CoN to construct a signed Bayesian Network (sBN). We report a surprising association between directed edges in signed BNs and known colonization orders. Conclusions BNs are powerful tools for community analysis and extracting influences and colonization patterns, even though the analysis only uses an abundance matrix with no temporal information. We conclude that directed edges in sBNs when combined with negative correlations are consistent with and strongly suggestive of colonization order.


1979 ◽  
Vol 57 (10) ◽  
pp. 1866-1870 ◽  
Author(s):  
L. K. Hartling ◽  
R. C. Plowright

A remotely controlled artificial flower system for investigation of bumble bee foraging behaviour in the laboratory is described. The behaviour of Bombus atratus Fkln. workers from captive colonies trained to forage on patches of artificial flowers in a flight room conformed well to the predictions of optimal foraging theory. Within-patch movement was systematic, tending to minimize repeat visits to flowers sampled previously. Between-patch movement was influenced both by frequency of encounters with empty flowers in the first patch and by inter-patch distance.


Ecology ◽  
1985 ◽  
Vol 66 (1) ◽  
pp. 179-187 ◽  
Author(s):  
Clayton M. Hodges
Keyword(s):  

Ecology ◽  
2008 ◽  
Vol 89 (9) ◽  
pp. 2369-2376 ◽  
Author(s):  
Carlos M. Herrera ◽  
Isabel M. García ◽  
Ricardo Pérez

Sign in / Sign up

Export Citation Format

Share Document