scholarly journals Effects of natamycin and Lactobacillus plantarum on the chemical composition, microbial community, and aerobic stability of Hybrid pennisetum at different temperatures

RSC Advances ◽  
2020 ◽  
Vol 10 (15) ◽  
pp. 8692-8702 ◽  
Author(s):  
Assar Ali Shah ◽  
Chen Qian ◽  
Juanzi Wu ◽  
Zhiwei Liu ◽  
Salman Khan ◽  
...  

The inoculation of L. plantarum and natamycin influenced the fermentation quality. Natamycin and L. plantarum reduced the undesirable microbial community. During ensiling process, the LA and LABs was significantly enhanced.

2019 ◽  
Vol 49 (7) ◽  
Author(s):  
Zhihao Dong ◽  
Junfeng Li ◽  
Lei Chen ◽  
Siran Wang ◽  
Tao Shao

ABSTRACT: This study was conducted to evaluate the effects of additives on the fermentation characteristics, chemical composition and in vitro digestibility of tetraploid black locust (TBL). The TBL leaves silage was either untreated (control) or treated with 1 × 106 cfu/g FM Lactobacillus plantarum (L), 1% glucose (G), 3% molasses (M), a combination of 1% glucose and Lactobacillus plantarum (L+G), or a combination of 3% molasses and Lactobacillus plantarum (L+M). Fermentation quality, chemical composition and nutrient digestibility were then analyzed. Ethanol and acetic acid concentrations were the dominant fermentation products in all silages except L+M silage. The L, G and L+G treatments failed to influence the fermentation. The M treatment increased (P<0.05) the lactic acid concentration and lowered (P<0.05) the pH when compared with control silage. The best fermentation properties were observed in L+M silage, as indicated by the dominance of lactic acid over ethanol in fermentation products. The M and L+M silages exhibited higher (P<0.05) dry matter, and M silage showed higher residual water-soluble carbohydrates than the control. Ensiling increased (P<0.05) the in vitro dry matter, neutral detergent fiber and acid detergent fiber degradability of TBL. Among the silages, M silage had the highest levels of dry matter, neutral detergent fiber and acid detergent fiber degradability. The obtained results suggested that application of lactic acid bacteria together with 3% molasses could be an effective strategy to prevent the occurrence of ethanol fermentation and improve fermentation quality of TBL silage; addition of fermentable sugars to TBL improves nutrient availability to ruminants.


Animals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1575
Author(s):  
Fuhou Li ◽  
Zitong Ding ◽  
Adegbola T. Adesogan ◽  
Wencan Ke ◽  
Yun Jiang ◽  
...  

The effects of two strains of class IIa bacteriocin-producing lactic acid bacteria, Lactobacillus delbrueckii F17 and Lactobacillus plantarum (BNCC 336943), or a non-bacteriocin Lactobacillus plantarum MTD/1 (NCIMB 40027), on fermentation quality, microbial counts, and aerobic stability of alfalfa silage were investigated. Alfalfa was harvested at the initial flowering stage, wilted to a dry matter concentration of approximately 32%, and chopped to 1 to 2 cm length. Chopped samples were treated with nothing (control, CON), Lactobacillus delbrueckii F17 (F17), Lactobacillus plantarum (BNCC 336943) (LPB), or Lactobacillus plantarum MTD/1 (NCIMB 40027) (LPN), each at an application rate of 1 × 106 colony-forming units/g of fresh weight. Each treatment was ensiled in quadruplicate in vacuum-sealed polyethylene bags packed with 500 g of fresh alfalfa per bag and ensiled at ambient temperature (25 ± 2 °C) for 3, 7, 14, 30, and 60 days. The samples were then subjected to an aerobic stability test after 60 days of ensiling. Compared with the CON silage, the inoculants reduced the pH after 14 days of ensiling. After 60 days, pH was lowest in the LPB-treated silage, followed by the F17 and LPN-treated silages. Inoculation of F17 increased concentrations of lactic acid in silages fermented for 7, 14, 30, and 60 days relative to other treatments, except for the LPN-treated silages ensiled for 30 and 60 days, in which the lactic acid concentrations were similar to that of F17 silage. Application of F17 and LPB decreased the number of yeast and mold relative to CON and LPN-treated silages. Compared with the CON silage, inoculant-treated silages had greater aerobic stability, water-soluble carbohydrate, and crude protein concentrations, and lower neutral detergent fiber, amino acid nitrogen, and ammonia nitrogen concentrations. The LPB-treated silage had the greatest aerobic stability followed by the F17-treated silage. Both class IIa bacteriocin producing inoculants improved alfalfa silage fermentation quality, reduced the growth of yeasts and molds, and improved the aerobic stability of the ensiled forage to a greater extent than the proven LPN inoculant. However, higher crude protein concentration and lower ammonia nitrogen concentration were observed in LPN-treated silage relative to other treatments.


2016 ◽  
Vol 56 (11) ◽  
pp. 1867 ◽  
Author(s):  
Erika C. Lara ◽  
Fernanda C. Basso ◽  
Flávia B. de Assis ◽  
Fernando A. Souza ◽  
Telma T. Berchielli ◽  
...  

Chemical composition, fermentation characteristics, in vitro digestibility and aerobic stability were evaluated in corn silage inoculated with microbial additives in two different experiments. Inoculant treatments (untreated, Bacillus subtilis and B. subtilis combined with Lactobacillus plantarum) were applied to fresh forages. Chopped corn plants (2B655 Hx) were ensiled in laboratory silos for periods of 7, 14, 21 and 63 days to evaluate the fermentation parameters. The experimental silos were weighed to determine gas losses. After the ensiling period, the silage was sampled to determine chemical composition and in vitro organic matter digestibility. To evaluate aerobic stability, chopped corn plants (AG‐1051) were ensiled in laboratory silos that were opened after 96 days of ensiling. The silage was placed in different buckets containing data loggers. The silage was sampled after 0, 4, 8 and 12 days of exposure to air to evaluate the microbial populations and pH. The data were analysed as a completely randomised design using a mixed repeated-measures model in the MIXED procedure of SAS. To evaluate each treatment relative to the fermentation times, a regression analysis using the PROC REG procedure of SAS was applied. A significance level of P < 0.05 was used. Inoculation with both strains increased lactic acid concentration, whereas the use of B. subtilis alone or combined with L. plantarum improved in vitro apparent organic matter digestibility. In the B. subtilis and B. subtilis combined with L. plantarum silages, moulds and yeasts decreased, and aerobic stability was improved. Inoculation with B. subtilis alone or combined with L. plantarum improved the nutritional value and aerobic stability of corn silage.


2018 ◽  
Vol 58 (10) ◽  
pp. 1860 ◽  
Author(s):  
XianJun Yuan ◽  
AiYou Wen ◽  
Jian Wang ◽  
JunFeng Li ◽  
Seare T. Desta ◽  
...  

This study was carried out to assess the effects of adding Lactobacillus plantarum, molasses or/and ethanol on the fermentation quality, in vitro digestibility and aerobic stability of total mixed ration (TMR) silage, which is well accepted in small-scale dairy farms in Tibet. Total mixed ration were ensiled in laboratory silos (1 L) and treated with (1) no additive (Control), (2) ethanol (E, 25 ml/kg fresh weight (FW)), (3) molasses (M, 30 g/kg FW); (4) Lactobacillus plantarum (L, 106cfu/g FW); (5) ethanol + molasses (EM); and (6) ethanol + Lactobacillus plantarum (EL). After 45 days of ensiling, six silos per treatment were opened for the fermentation quality and in vitro digestibility analyses, whereas 18 silos were used for the aerobic stability test for the following 9 days. All TMR silages were well preserved with dominant lactic acid (LA), low pH and ammonia nitrogen, and negligible propionic and butyric acid. The L and EL silages had the lowest pH and highest LA concentrations. The addition of ethanol did not inhibit silage fermentation as there were no significant differences for the pH, LA, acetic acid, negligible propionic acid or ammonia nitrogen content, lactic acid bacteria and yeast counts between Control and the E silage. During the aerobic stability test, pH increased by 1.39, 1.67, 1.69 and 0.74 for the Control, M, L and EM silages, but only 0.40 and 0.34 for E and EL silages, respectively. Upon exposure to air, the LA concentration in the L silage was evidently (P < 0.05) decreased, whereas LA concentration in the EL silage remained the highest value after the third day of aerobic exposure. Mean populations of aerobic bacteria and yeast in the E and EL silages were lower (P < 0.05) than those of the Control. These findings suggested that L. plantarum is effective in improving fermentation quality of TMR silages. Although the addition of ethanol in our study did not depress the fermentation of the TMR silages, it showed potential to inhibit the aerobic spoilage of TMR silages, either alone or in combination with the L. plantarum. It is concluded that L. plantarum combined with ethanol not only ensures better fermentation but also could improve aerobic stability.


Author(s):  
Václav Pyrochta ◽  
Libor Kalhotka ◽  
Petr Doležal

In the experiment, the effect of additives supplementation on the fermentation quality of corn silage was examined, compared with the untreated control (K). The aditive „A“ contained bacterial component of (Propionibactrium acidipropionici – MA126/4U 3*1010 and Lactobacillus plantarum – MA18/5U). The effective substances of bacterial inoculants „B“, selected were bacterial strains of (Lactobacillus casei ssp. rhamnosus LC – 705 DSM 7061 4*1011, Propionibacterium freudenreichii spp. shermanii JS DSM 6067 2-4*1011). There were used as effective substances of bacterial inoculants „C“ lactic bacteria and enzyme (Lactobacillus plantarum CCM 3769 1.67*1010, Lactococcus lactis CCM 4754 1.67*1010, Enterococcus faecium CCM 6226 1.67*1010, Pediococcus pentosaceus CCM 3770 1,67*1010, cellulase, hemicellulase, sodium benzoate). They were applied in the dose of prescript by producer. At conservations with all aditivum were statistically significant (P < 0.01) increase of lactic acid formation from 55.31±9.72 g/kg DM of control silage to 59.60±10.84 g/kg DM aditivum „A“, 59.36±10.04 g/ kg DM aditivum „B“ rather to 60.74±9.90 g/kg DM aditivum „C“. Aditives „A“ and „B“ were statistically significant (P < 0.01) increase propoinic acid and total fermentation acid content in silages occured. The fermentation characteristics in the microbial aditivum silages by us were more favourable. The date of fermentation was statistically significant (P < 0.01) increase the contents of acetic acid from 45.49±2.83 g/kg DM of 4st day to 63.07±4.25 g/kg DM of 32ndday rather to 67.70±2.94 g/kg DM of 64st day. There were statistically significant (P < 0.01) increase contents of acetic acid and total acid content. The date of fermentation was statistically significant (P < 0.01) degressive of pH.


Sign in / Sign up

Export Citation Format

Share Document