A third broad lineage of major histocompatibility complex (MHC) class I in teleost fish; MHC class II linkage and processed genes

2007 ◽  
Vol 59 (4) ◽  
pp. 305-321 ◽  
Author(s):  
Johannes Martinus Dijkstra ◽  
Takayuki Katagiri ◽  
Kazuyoshi Hosomichi ◽  
Kazuyo Yanagiya ◽  
Hidetoshi Inoko ◽  
...  
F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 963 ◽  
Author(s):  
Johannes M. Dijkstra ◽  
Unni Grimholt

This correspondence concerns a publication by Malmstrøm et al. in Nature Genetics in October 2016. Malmstrøm et al. made an important contribution to fish phylogeny research by using low-coverage genome sequencing for comparison of 66 teleost (modern bony) fish species, with 64 of those 66 belonging to the species-rich clade Neoteleostei, and with 27 of those 64 belonging to the order Gadiformes. For these 66 species, Malmstrøm et al. estimated numbers of genes belonging to the major histocompatibility complex (MHC) class I lineages U and Z and concluded that in teleost fish these combined numbers are positively associated with, and a driving factor of, the rates of establishment of new fish species (speciation rates). They also claimed that functional genes for the MHC class II system molecules MHC IIA, MHC IIB, CD4 and CD74 were lost in early Gadiformes. Our main criticisms are (1) that the authors did not provide sufficient evidence for presence or absence of intact functional MHC class I or MHC class II system genes, (2) that they did not discuss that an MHC subpopulation gene number alone is a very incomplete measure of MHC variance, and (3) that the MHC system is more likely to reduce speciation rates than to enhance them. We conclude that their new model of MHC class I evolution, reflected in their title “Evolution of the immune system influences speciation rates in teleost fish”, is unsubstantiated. In addition, we explain that their “pinpointing” of the functional loss of the MHC class II system and all the important MHC class II system genes to the onset of Gadiformes is preliminary, because they did not sufficiently investigate the species at the clade border.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 963
Author(s):  
Johannes M. Dijkstra ◽  
Unni Grimholt

This correspondence concerns a publication by Malmstrøm et al. in Nature Genetics in October 2016. Malmstrøm et al. made an important contribution to fish phylogeny research by using low-coverage genome sequencing for comparison of 66 teleost (modern bony) fish species, with 64 of those 66 belonging to the species-rich clade Neoteleostei, and with 27 of those 64 belonging to the order Gadiformes. For these 66 species, Malmstrøm et al. estimated numbers of genes belonging to the major histocompatibility complex (MHC) class I lineages U and Z and concluded that in teleost fish these combined numbers are positively associated with, and a driving factor of, the rates of establishment of new fish species (speciation rates). They also claimed that functional genes for the MHC class II system molecules MHC IIA, MHC IIB, CD4 and CD74 were lost in early Gadiformes. Our main criticisms are (1) that the authors did not provide sufficient evidence for presence or absence of intact functional MHC class I or MHC class II system genes, (2) that they did not discuss that an MHC subpopulation gene number alone is a very incomplete measure of MHC variance, and (3) that the MHC system is more likely to reduce speciation rates than to enhance them. Furthermore, their use of the Ornstein-Uhlenbeck model is a typical example of overly naïve use of that model system. In short, we conclude that their new model of MHC class I evolution, reflected in their title “Evolution of the immune system influences speciation rates in teleost fish”, is unsubstantiated, and that their “pinpointing” of the functional loss of the MHC class II system and all the important MHC class II system genes to the onset of Gadiformes is preliminary, because they did not sufficiently investigate the species at the clade border.


2012 ◽  
Vol 279 (1746) ◽  
pp. 4457-4463 ◽  
Author(s):  
Maria Strandh ◽  
Helena Westerdahl ◽  
Mikael Pontarp ◽  
Björn Canbäck ◽  
Marie-Pierre Dubois ◽  
...  

Mate choice for major histocompatibility complex (MHC) compatibility has been found in several taxa, although rarely in birds. MHC is a crucial component in adaptive immunity and by choosing an MHC-dissimilar partner, heterozygosity and potentially broad pathogen resistance is maximized in the offspring. The MHC genotype influences odour cues and preferences in mammals and fish and hence olfactory-based mate choice can occur. We tested whether blue petrels, Halobaena caerulea , choose partners based on MHC compatibility. This bird is long-lived, monogamous and can discriminate between individual odours using olfaction, which makes it exceptionally well suited for this analysis. We screened MHC class I and II B alleles in blue petrels using 454-pyrosequencing and quantified the phylogenetic, functional and allele-sharing similarity between individuals. Partners were functionally more dissimilar at the MHC class II B loci than expected from random mating ( p = 0.033), whereas there was no such difference at the MHC class I loci. Phylogenetic and non-sequence-based MHC allele-sharing measures detected no MHC dissimilarity between partners for either MHC class I or II B. Our study provides evidence of mate choice for MHC compatibility in a bird with a high dependency on odour cues, suggesting that MHC odour-mediated mate choice occurs in birds.


Cells ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 378 ◽  
Author(s):  
Yamaguchi ◽  
Dijkstra

Fascinating about classical major histocompatibility complex (MHC) molecules is their polymorphism. The present study is a review and discussion of the fish MHC situation. The basic pattern of MHC variation in fish is similar to mammals, with MHC class I versus class II, and polymorphic classical versus nonpolymorphic nonclassical. However, in many or all teleost fishes, important differences with mammalian or human MHC were observed: (1) The allelic/haplotype diversification levels of classical MHC class I tend to be much higher than in mammals and involve structural positions within but also outside the peptide binding groove; (2) Teleost fish classical MHC class I and class II loci are not linked. The present article summarizes previous studies that performed quantitative trait loci (QTL) analysis for mapping differences in teleost fish disease resistance, and discusses them from MHC point of view. Overall, those QTL studies suggest the possible importance of genomic regions including classical MHC class II and nonclassical MHC class I genes, whereas similar observations were not made for the genomic regions with the highly diversified classical MHC class I alleles. It must be concluded that despite decades of knowing MHC polymorphism in jawed vertebrate species including fish, firm conclusions (as opposed to appealing hypotheses) on the reasons for MHC polymorphism cannot be made, and that the types of polymorphism observed in fish may not be explained by disease-resistance models alone.


Immunology ◽  
2009 ◽  
Vol 128 (1pt2) ◽  
pp. e432-e441 ◽  
Author(s):  
Rosângela M. Rodrigues ◽  
Neide M. Silva ◽  
Ana Lúcia R. Gonçalves ◽  
Cristina R. Cardoso ◽  
Ronaldo Alves ◽  
...  

Blood ◽  
2002 ◽  
Vol 100 (8) ◽  
pp. 2867-2873 ◽  
Author(s):  
Barry Slobedman ◽  
Edward S. Mocarski ◽  
Ann M. Arvin ◽  
Elizabeth D. Mellins ◽  
Allison Abendroth

Following primary infection, human cytomegalovirus (CMV) establishes a lifelong latent infection in bone marrow–derived myeloid lineage cells. Although downmodulation of major histocompatibility complex (MHC) class I and class II protein levels occurs during active viral replication, little is known about the modulation of these proteins during latent infection. When analyzed by flow cytometry, latently infected adherent cells collected from granulocyte macrophage progenitor (GM-P) cultures exhibited a striking reduction in MHC class II antigen present on the cell surface starting very early after exposure to virus that continued for more than 2 weeks. In comparison, cell surface levels of the monocyte cell surface marker CD14 remained unaltered in these cells. A recombinant virus (RV798) lacking the virus genes US2-US11 retained the ability to downmodulate MHC class II levels during latent infection. Immunoblot and immunofluorescent antibody staining analyses showed that the reduction in MHC class II surface levels during latency was associated with a block in protein trafficking. HLA-DR was retained within cytoplasmic vesicles that also contained HLA-DM. Thus, downmodulation remained independent of all previously characterized MHC class I and class II immunomodulatory viral gene products and involved a mechanism not previously ascribed to any viral function. These data show that latent infection is accompanied by reduced cell surface expression of MHC class II proteins, a strategy that would afford the virus escape from immunosurveillance and increase the chances for lifelong latent infection.


Cells ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1200 ◽  
Author(s):  
Plasil ◽  
Wijkmark ◽  
Elbers ◽  
Oppelt ◽  
Burger ◽  
...  

This study brings new information on major histocompatibility complex (MHC) class III sub-region genes in Old World camels and integrates current knowledge of the MHC region into a comprehensive overview for Old World camels. Out of the MHC class III genes characterized, TNFA and the LY6 gene family showed high levels of conservation, characteristic for MHC class III loci in general. For comparison, an MHC class II gene TAP1, not coding for antigen presenting molecules but functionally related to MHC antigen presenting functions was studied. TAP1 had many SNPs, even higher than the MHC class I and II genes encoding antigen presenting molecules. Based on this knowledge and using new camel genomic resources, we constructed an improved genomic map of the entire MHC region of Old World camels. The MHC class III sub-region shows a standard organization similar to that of pig or cattle. The overall genomic structure of the camel MHC is more similar to pig MHC than to cattle MHC. This conclusion is supported by differences in the organization of the MHC class II sub-region, absence of functional DY genes, different organization of MIC genes in the MHC class I sub-region, and generally closer evolutionary relationships of camel and porcine MHC gene sequences analyzed so far.


Sign in / Sign up

Export Citation Format

Share Document