mhc class iii
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 5)

H-INDEX

20
(FIVE YEARS 1)

2021 ◽  
Vol 12 ◽  
Author(s):  
Cinzia Carrozza ◽  
Laura Foca ◽  
Elisa De Paolis ◽  
Paola Concolino

Copy Number Variations (CNVs) account for a large proportion of human genome and are a primary contributor to human phenotypic variation, in addition to being the molecular basis of a wide spectrum of disease. Multiallelic CNVs represent a considerable fraction of large CNVs and are strictly related to segmental duplications according to their prevalent duplicate alleles. RCCX CNV is a complex, multiallelic and tandem CNV located in the major histocompatibility complex (MHC) class III region. RCCX structure is typically defined by the copy number of a DNA segment containing a series of genes – the serine/threonine kinase 19 (STK19), the complement 4 (C4), the steroid 21-hydroxylase (CYP21), and the tenascin-X (TNX) – lie close to each other. In the Caucasian population, the most common RCCX haplotype (69%) consists of two segments containing the genes STK19-C4A-CYP21A1P-TNXA-STK19B-C4B-CYP21A2-TNXB, with a telomere-to-centromere orientation. Nonallelic homologous recombination (NAHR) plays a key role into the RCCX genetic diversity: unequal crossover facilitates large structural rearrangements and copy number changes, whereas gene conversion mediates relatively short sequence transfers. The results of these events increased the RCCX genetic diversity and are responsible of specific human diseases. This review provides an overview on RCCX complexity pointing out the molecular bases of Congenital Adrenal Hyperplasia (CAH) due to CYP21A2 deficiency, CAH-X Syndrome and disorders related to CNV of complement component C4.


RNA Biology ◽  
2020 ◽  
pp. 1-7
Author(s):  
Geraldine Schott ◽  
Mariano A. Garcia-Blanco

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Michael C. Campbell ◽  
Bryan Ashong ◽  
Shaolei Teng ◽  
Jayla Harvey ◽  
Christopher N. Cross

Abstract Background Lymphotoxin-α (LTα), located in the Major Histocompatibility Complex (MHC) class III region on chromosome 6, encodes a cytotoxic protein that mediates a variety of antiviral responses among other biological functions. Furthermore, several genotypes at this gene have been implicated in the onset of a number of complex diseases, including myocardial infarction, autoimmunity, and various types of cancer. However, little is known about levels of nucleotide variation and linkage disequilibrium (LD) in and near LTα, which could also influence phenotypic variance. To address this gap in knowledge, we examined sequence variation across ~ 10 kilobases (kbs), encompassing LTα and the upstream region, in 2039 individuals from the 1000 Genomes Project originating from 21 global populations. Results Here, we observed striking patterns of diversity, including an excess of intermediate-frequency alleles, the maintenance of multiple common haplotypes and a deep coalescence time for variation (dating > 1.0 million years ago), in global populations. While these results are generally consistent with a model of balancing selection, we also uncovered a signature of positive selection in the form of long-range LD on chromosomes with derived alleles primarily in Eurasian populations. To reconcile these findings, which appear to support different models of selection, we argue that selective sweeps (particularly, soft sweeps) of multiple derived alleles in and/or near LTα occurred in non-Africans after their ancestors left Africa. Furthermore, these targets of selection were predicted to alter transcription factor binding site affinity and protein stability, suggesting they play a role in gene function. Additionally, our data also showed that a subset of these functional adaptive variants are present in archaic hominin genomes. Conclusions Overall, this study identified candidate functional alleles in a biologically-relevant genomic region, and offers new insights into the evolutionary origins of these loci in modern human populations.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Michael C. Campbell ◽  
Bryan Ashong ◽  
Shaolei Teng ◽  
Jayla Harvey ◽  
Christopher N. Cross

After publication of our article [1] we were notified that a few duplicate sentences were included on Figure 3 and Figure 4 legends.


Cells ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1200 ◽  
Author(s):  
Plasil ◽  
Wijkmark ◽  
Elbers ◽  
Oppelt ◽  
Burger ◽  
...  

This study brings new information on major histocompatibility complex (MHC) class III sub-region genes in Old World camels and integrates current knowledge of the MHC region into a comprehensive overview for Old World camels. Out of the MHC class III genes characterized, TNFA and the LY6 gene family showed high levels of conservation, characteristic for MHC class III loci in general. For comparison, an MHC class II gene TAP1, not coding for antigen presenting molecules but functionally related to MHC antigen presenting functions was studied. TAP1 had many SNPs, even higher than the MHC class I and II genes encoding antigen presenting molecules. Based on this knowledge and using new camel genomic resources, we constructed an improved genomic map of the entire MHC region of Old World camels. The MHC class III sub-region shows a standard organization similar to that of pig or cattle. The overall genomic structure of the camel MHC is more similar to pig MHC than to cattle MHC. This conclusion is supported by differences in the organization of the MHC class II sub-region, absence of functional DY genes, different organization of MIC genes in the MHC class I sub-region, and generally closer evolutionary relationships of camel and porcine MHC gene sequences analyzed so far.


Immunobiology ◽  
2018 ◽  
Vol 223 (11) ◽  
pp. 699-708 ◽  
Author(s):  
Ulrich H. Weidle ◽  
Ina Rohwedder ◽  
Fabian Birzele ◽  
Elisabeth H. Weiss ◽  
Christian Schiller
Keyword(s):  

Gene ◽  
2018 ◽  
Vol 659 ◽  
pp. 93-99 ◽  
Author(s):  
Alexandra Shadrina ◽  
Yakov Tsepilov ◽  
Ekaterina Sokolova ◽  
Mariya Smetanina ◽  
Elena Voronina ◽  
...  

2016 ◽  
Vol 113 (26) ◽  
pp. E3716-E3724 ◽  
Author(s):  
Anthony C. Y. Yau ◽  
Jonatan Tuncel ◽  
Sabrina Haag ◽  
Ulrika Norin ◽  
Miranda Houtman ◽  
...  

Genome-wide association studies have revealed many genetic loci associated with complex autoimmune diseases. In rheumatoid arthritis (RA), the MHC gene HLA-DRB1 is the strongest candidate predicting disease development. It has been suggested that other immune-regulating genes in the MHC contribute to the disease risk, but this contribution has been difficult to show because of the strong linkage disequilibrium within the MHC. We isolated genomic regions in the form of congenic fragments in rats to test whether there are additional susceptibility loci in the MHC. By both congenic mapping in inbred strains and SNP typing in wild rats, we identified a conserved, 33-kb large haplotype Ltab-Ncr3 in the MHC-III region, which regulates the onset, severity, and chronicity of arthritis. The Ltab-Ncr3 haplotype consists of five polymorphic immunoregulatory genes: Lta (lymphotoxin-α), Tnf, Ltb (lymphotoxin-β), Lst1 (leukocyte-specific transcript 1), and Ncr3 (natural cytotoxicity-triggering receptor 3). Significant correlation in the expression of the Ltab-Ncr3 genes suggests that interaction of these genes may be important in keeping these genes clustered together as a conserved haplotype. We studied the arthritis association and the spliceo-transcriptome of four different Ltab-Ncr3 haplotypes and showed that higher Ltb and Ncr3 expression, lower Lst1 expression, and the expression of a shorter splice variant of Lst1 correlate with reduced arthritis severity in rats. Interestingly, patients with mild RA also showed higher NCR3 expression and lower LST1 expression than patients with severe RA. These data demonstrate the importance of a conserved haplotype in the regulation of complex diseases such as arthritis.


2016 ◽  
Author(s):  
Douglas M. Templeton ◽  
Michael Schwenk ◽  
Reinhild Klein ◽  
John H. Duffus

Sign in / Sign up

Export Citation Format

Share Document