Bacterial communities in manures of piglets and adult pigs bred with different feeds revealed by 16S rDNA 454 pyrosequencing

2013 ◽  
Vol 98 (6) ◽  
pp. 2657-2665 ◽  
Author(s):  
Xiao-Ming Lu ◽  
Peng-Zhen Lu ◽  
Hui Zhang
Insects ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 525
Author(s):  
Poonnawat Panjad ◽  
Rujipas Yongsawas ◽  
Chainarong Sinpoo ◽  
Chonthicha Pakwan ◽  
Phakamas Subta ◽  
...  

Honeybees, Apis mellifera, are important pollinators of many economically important crops. However, one of the reasons for their decline is pathogenic infection. Nosema disease and American foulbrood (AFB) disease are the most common bee pathogens that propagate in the gut of honeybees. This study investigated the impact of gut-propagating pathogens, including Nosema ceranae and Paenibacillus larvae, on bacterial communities in the gut of A. mellifera using 454-pyrosequencing. Pyrosequencing results showed that N. ceranae was implicated in the elimination of Serratia and the dramatic increase in Snodgrassella and Bartonella in adult bees’ guts, while bacterial communities of P. larvae-infected larvae were not affected by the infection. The results indicated that only N. ceranae had an impact on some core bacteria in the gut of A. mellifera through increasing core gut bacteria, therefore leading to the induction of dysbiosis in the bees’ gut.


2007 ◽  
Vol 73 (6) ◽  
pp. 1435-1440 ◽  
Author(s):  
Mingqin Zhao ◽  
Baoxiang Wang ◽  
Fuxin Li ◽  
Liyou Qiu ◽  
Fangfang Li ◽  
...  

2020 ◽  
Vol 10 ◽  
Author(s):  
Emilie Cauchie ◽  
Laurent Delhalle ◽  
Bernard Taminiau ◽  
Assia Tahiri ◽  
Nicolas Korsak ◽  
...  

2014 ◽  
Vol 281 (1779) ◽  
pp. 20132653 ◽  
Author(s):  
Quinn S. McFrederick ◽  
Ulrich G. Mueller ◽  
Rosalind R. James

Recent declines in bee populations coupled with advances in DNA-sequencing technology have sparked a renaissance in studies of bee-associated microbes. Megachile rotundata is an important field crop pollinator, but is stricken by chalkbrood, a disease caused by the fungus Ascosphaera aggregata . To test the hypothesis that some gut microbes directly or indirectly affect the growth of others, we applied four treatments to the pollen provisions of M. rotundata eggs and young larvae: antibacterials, antifungals, A. aggregata spores and a no-treatment control. We allowed the larvae to develop, and then used 454 pyrosequencing and quantitative PCR (for A. aggregata ) to investigate fungal and bacterial communities in the larval gut. Antifungals lowered A. aggregata abundance but increased the diversity of surviving fungi. This suggests that A. aggregata inhibits the growth of other fungi in the gut through chemical or competitive interaction. Bacterial richness decreased under the antifungal treatment, suggesting that changes in the fungal community caused changes in the bacterial community. We found no evidence that bacteria affect fungal communities. Lactobacillus kunkeei clade bacteria were common members of the larval gut microbiota and exhibited antibiotic resistance. Further research is needed to determine the effect of gut microbes on M. rotundata health.


2008 ◽  
Vol 54 (12) ◽  
pp. 996-1005 ◽  
Author(s):  
Dulcecleide B. Freitas ◽  
Mariana P. Reis ◽  
Leandro M. Freitas ◽  
Paulo S. Assis ◽  
Edmar Chartone-Souza ◽  
...  

We characterized the bacterial diversity of newly produced steelmaking wastes (NPSW) and steelmaking wastes deposited (SWD) in a restricted land area, generated by the siderurgic industry, using the 16S rDNA clone library approach. A total of 212 partial-length sequences were analyzed, revealing 123 distinct operational taxonomic units (OTUs) determined by the DOTUR program to 97% sequence similarity. Phylogenetic analysis of bacterial 16S rDNA sequences from the NPSW and SWD libraries demonstrated that Gammaproteobacteria, Betaproteobacteria, Alphaproteobacteria, Actinobacteria, Planctomycetes, Firmicutes, and Bacteroidetes were represented in both libraries. Deltaproteobacteria, Acidobacteria, Chloroflexi, Deinococcus-thermus, Gemmatimonadetes, and candidate divisions OP10 and OD1 were only present in the SWD library, and Nitrospira was only present in the NPSW library. The abundance of sequences affiliated with Gammaproteobacteria was high in both libraries. Six previously unclassified OTUs may represent novel taxa. Based on diversity indices (Simpson, Shannon–Weaver, Chao1, and ACE), the SWD library had a higher diversity. LIBSHUFF comparisons of the composition of the 2 libraries showed that they were significantly different. These results indicate that the bacterial communities in steelmaking wastes present high phylogenetic diversity and complexity. A possible association between the functional diversity and the bacterial communities’ complexity requires further phenotypic investigation.


2002 ◽  
Vol 68 (1) ◽  
pp. 219-226 ◽  
Author(s):  
Christine F. Favier ◽  
Elaine E. Vaughan ◽  
Willem M. De Vos ◽  
Antoon D. L. Akkermans

ABSTRACT The establishment of bacterial communities in two healthy babies was examined for more than the first 10 months of life by monitoring 16S ribosomal DNA (rDNA) diversity in fecal samples by PCR and denaturing gradient gel electrophoresis (DGGE) and by analyzing the sequences of the major ribotypes. DGGE profiles of the dominant populations in the intestines of the infants were obtained by analyzing daily or weekly fecal samples. After delivery, the germfree infant gastrointestinal tracts were rapidly colonized, and the succession of bacteria in each ecosystem was monitored. During the first few days of life the profiles were simple, but they became more complex as the bacterial diversity increased with time in both babies. Clone libraries of amplified 16S rDNA fragments from baby feces were constructed, and these libraries allowed identification of the bacterial types by comparative DNA sequence analysis; the bacteria identified included members of the genera Bifidobacterium, Ruminococcus, Enterococcus, Clostridium, and Enterobacter. Species most closely related to the genera Bifidobacterium and Ruminococcus in particular dominated the intestinal microbiota based on the stability over time and the numbers, as estimated by the intensities of the bands. However, 19 of the 34 cloned rDNA sequences exhibited less than 97% identity with sequences of known bacteria or cloned sequences in databases. This study showed that using PCR-DGGE and 16S rDNA sequence analysis together resulted in a dynamic description of bacterial colonization in the infant intestinal ecosystem and allowed visualization of bacteria that are difficult to cultivate or to detect by other methods.


Sign in / Sign up

Export Citation Format

Share Document