scholarly journals Impact of Nosema Disease and American Foulbrood on Gut Bacterial Communities of Honeybees Apis mellifera

Insects ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 525
Author(s):  
Poonnawat Panjad ◽  
Rujipas Yongsawas ◽  
Chainarong Sinpoo ◽  
Chonthicha Pakwan ◽  
Phakamas Subta ◽  
...  

Honeybees, Apis mellifera, are important pollinators of many economically important crops. However, one of the reasons for their decline is pathogenic infection. Nosema disease and American foulbrood (AFB) disease are the most common bee pathogens that propagate in the gut of honeybees. This study investigated the impact of gut-propagating pathogens, including Nosema ceranae and Paenibacillus larvae, on bacterial communities in the gut of A. mellifera using 454-pyrosequencing. Pyrosequencing results showed that N. ceranae was implicated in the elimination of Serratia and the dramatic increase in Snodgrassella and Bartonella in adult bees’ guts, while bacterial communities of P. larvae-infected larvae were not affected by the infection. The results indicated that only N. ceranae had an impact on some core bacteria in the gut of A. mellifera through increasing core gut bacteria, therefore leading to the induction of dysbiosis in the bees’ gut.

2017 ◽  
Vol 60 (No. 12) ◽  
pp. 696-705 ◽  
Author(s):  
I. Tlak Gajger ◽  
J. Ribaric ◽  
M. Matak ◽  
L. Svecnjak ◽  
Z. Kozaric ◽  
...  

Control of the nosema disease poses a major challenge, and therefore, treatment of this serious parasitic disease using natural preparations could be of great benefit. The aim of this study was to test the performance of zeolite clinoptilolite as a curative measure against honeybee colonies (Apis mellifera L.) naturally infected by Nosema ceranae. The histopathological structure, and the content and distribution of mucosubstances and histochemical activity of aminopeptidase and non-specific esterase in the midgut mucosa of honeybees originating from colonies fed sugar syrup supplemented with zeolite minerals was studied. A decline in the number of spores in honeybees fed with zeolite clinoliptolite was observed on the first sampling day (Day 10; 53.25 ± 15.15 million spores/bee), though a statistically lower number of spores in comparison to the control was confirmed on Day 20 (41.08 ± 9.4 million spores/bee), Day 30 (28.42 ± 7.79 million spores/bee) and Day 40 (24 ± 6.25 million spores/bee). The possibility of using natural zeolites as a dietary supplement for honeybee colonies as a preventative measure and for the reduction of the deleterious effects of nosemosis is discussed.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jana Biová ◽  
Jaroslav Bzdil ◽  
Silvie Dostálková ◽  
Marek Petřivalský ◽  
Jan Brus ◽  
...  

American foulbrood (AFB) is a dangerous disease of honeybees (Apis mellifera) caused by the spore-forming bacterium Paenibacillus larvae. According to the ERIC (enterobacterial repetitive intergenic consensus) classification, five genotypes are distinguished, i.e., I, II, III, IV, and V, which differ in their virulence and prevalence in colonies. In the Czech Republic, AFB prevalence is monitored by the State Veterinary Administration; however, the occurrence of specific P. larvae genotypes within the country remains unknown. In this study, our aim was to genotype field P. larvae strains collected in the Czech Republic according to the ERIC classification. In total, 102 field isolates from colonies with AFB clinical symptoms were collected from various locations in the Czech Republic, and the PCR genotypization was performed using ERIC primers. We confirmed the presence of both ERIC I and II genotypes, while ERIC III, IV, and V were not detected. The majority of samples (n = 82, 80.4%) were identified as ERIC II, while the ERIC I genotype was confirmed only in 20 samples (19.6%). In contrast to other European countries, the ERIC II genotype is predominant in Czech honeybee colonies. The ERIC I genotype was mostly detected in border regions close to Poland, Slovakia, and Austria.


2006 ◽  
Vol 274 (1606) ◽  
pp. 67-72 ◽  
Author(s):  
Thomas D Seeley ◽  
David R Tarpy

Most species of social insects have singly mated queens, but in some species each queen mates with numerous males to create a colony with a genetically diverse worker force. The adaptive significance of polyandry by social insect queens remains an evolutionary puzzle. Using the honeybee ( Apis mellifera ), we tested the hypothesis that polyandry improves a colony's resistance to disease. We established colonies headed by queens that had been artificially inseminated by either one or 10 drones. Later, we inoculated these colonies with spores of Paenibacillus larvae , the bacterium that causes a highly virulent disease of honeybee larvae (American foulbrood). We found that, on average, colonies headed by multiple-drone inseminated queens had markedly lower disease intensity and higher colony strength at the end of the summer relative to colonies headed by single-drone inseminated queens. These findings support the hypothesis that polyandry by social insect queens is an adaptation to counter disease within their colonies.


2010 ◽  
Vol 55 (No. 9) ◽  
pp. 457-462 ◽  
Author(s):  
I. Tlak Gajger ◽  
O. Vugrek ◽  
D. Grilec ◽  
Z. Petrinec

Nosema disease of European honey bees afflicts bees worldwide. Nosema ceranae is a recently described microsporidian parasite of the honey bee (Apis mellifera) and its geographical distribution is not well known. The disease may have many negative effects on bee colonies and cause high losses for apiculture and consequently in agriculture. With this in mind, a total of 204 samples of dead bees from different localities in Croatia were selected and investigated for distribution, prevalence and diversity of N. ceranae infection, using light microscopic examination and multiplex PCR. Our results show that N. ceranae is the only nosema species found to infect honeybees in our geographically varied collection. The nucleotide sequences of amplicons from Nosema-infested honeybee samples were 100% identical with the N. ceranae sequence deposited in the GenBank database. N. ceranae infected bees were found in samples collected from each of 21 districts, and in all three climatic areas, i.e., mediterranean, mountain, and continental parts regions of Croatia.


Author(s):  
J. Elijah Powell ◽  
Zac Carver ◽  
Sean P. Leonard ◽  
Nancy A. Moran

The antibiotic tylosin tartrate is used to treat honey bee hives to control Paenibacillus larvae , the bacterium that causes American foulbrood. We found that bees from tylosin-treated hives had gut microbiomes with depleted overall diversity as well as reduced absolute abundances and strain diversity of the beneficial bee gut bacteria Snodgrassella alvi and Bifidobacterium spp.


2021 ◽  
Vol 17 (2) ◽  
pp. e1009270
Author(s):  
Cristina Rodríguez-García ◽  
Matthew C. Heerman ◽  
Steven C. Cook ◽  
Jay D. Evans ◽  
Gloria DeGrandi-Hoffman ◽  
...  

Nosemosis C, a Nosema disease caused by microsporidia parasite Nosema ceranae, is a significant disease burden of the European honey bee Apis mellifera which is one of the most economically important insect pollinators. Nevertheless, there is no effective treatment currently available for Nosema disease and the disease mechanisms underlying the pathological effects of N. ceranae infection in honey bees are poorly understood. Iron is an essential nutrient for growth and survival of hosts and pathogens alike. The iron tug-of-war between host and pathogen is a central battlefield at the host-pathogen interface which determines the outcome of an infection, however, has not been explored in honey bees. To fill the gap, we conducted a study to investigate the impact of N. ceranae infection on iron homeostasis in honey bees. The expression of transferrin, an iron binding and transporting protein that is one of the key players of iron homeostasis, in response to N. ceranae infection was analysed. Furthermore, the functional roles of transferrin in iron homeostasis and honey bee host immunity were characterized using an RNA interference (RNAi)-based method. The results showed that N. ceranae infection causes iron deficiency and upregulation of the A. mellifera transferrin (AmTsf) mRNA in honey bees, implying that higher expression of AmTsf allows N. ceranae to scavenge more iron from the host for its proliferation and survival. The suppressed expression levels of AmTsf via RNAi could lead to reduced N. ceranae transcription activity, alleviated iron loss, enhanced immunity, and improved survival of the infected bees. The intriguing multifunctionality of transferrin illustrated in this study is a significant contribution to the existing body of literature concerning iron homeostasis in insects. The uncovered functional role of transferrin on iron homeostasis, pathogen growth and honey bee’s ability to mount immune responses may hold the key for the development of novel strategies to treat or prevent diseases in honey bees.


Sign in / Sign up

Export Citation Format

Share Document