gut microbes
Recently Published Documents


TOTAL DOCUMENTS

574
(FIVE YEARS 271)

H-INDEX

47
(FIVE YEARS 11)

2022 ◽  
Vol 378 ◽  
pp. 132136
Author(s):  
María Ruiz-Rico ◽  
Simone Renwick ◽  
Emma Allen-Vercoe ◽  
José M. Barat

Glia ◽  
2022 ◽  
Author(s):  
Kylynda C. Bauer ◽  
Elisa M. York ◽  
Mihai S. Cirstea ◽  
Nina Radisavljevic ◽  
Charisse Petersen ◽  
...  

2022 ◽  
Author(s):  
Shanlin Ke ◽  
Yandong Xiao ◽  
Scott T. Weiss ◽  
Xinhua Chen ◽  
Ciaran P. Kelly ◽  
...  

The indigenous gut microbes have co-evolved with their hosts for millions of years. Those gut microbes play a crucial role in host health and disease. In particular, they protect the host against incursion by exogenous and often harmful microorganisms, a mechanism known as colonization resistance (CR). Yet, identifying the exact microbes responsible for the gut microbiota-mediated CR against a particular pathogen remains a fundamental challenge in microbiome research. Here, we develop a computational method --- Generalized Microbe-Phenotype Triangulation (GMPT) to systematically identify causal microbes that directly influence the microbiota-mediated CR against a pathogen. We systematically validate GMPT using a classical population dynamics model in community ecology, and then apply it to microbiome data from two mouse studies on C. difficile infection. The developed method will not only significantly advance our understanding of CR mechanisms but also pave the way for the rational design of microbiome-based therapies for preventing and treating enteric infections.


2022 ◽  
Author(s):  
Na Luo ◽  
Wenjun Zhu ◽  
Xiaoyu Li ◽  
Min Fu ◽  
Xiaohong Peng ◽  
...  

Radiation-induced brain injury is a common complication of brain irradiation that eventually leads to irreversible cognitive impairment. Evidence has shown that the gut microbiome may play an important role in radiation-induced cognitive function. However, the effects of gut microbiota on radiation-induced brain injury (RIBI) remain poorly understood. Here we studied the link between intestinal microbes and radiation-induced brain injury to further investigate the effects of intestinal bacteria on neuroinflammation and cognitive function. We first verified the differences in gut microbes between male and female mice and administered antibiotics to C57BL/6 male mice to deplete the gut flora and then expose mice to radiation. We found that depletion of intestinal flora after irradiation may act as a protective modulator against radiation-induced brain injury. Moreover, we found that pretreatment with depleted gut microbes in RIBI mice suppressed brain pro-inflammatory factor production, and high-throughput sequencing analysis of mouse feces at 1-month postirradiation revealed microbial differences. Interestingly, a proportion of Verrucomicrobia Akkermansia showed partial recovery. Additionally, short-chain fatty acid treatments increased neuroinflammation in the radiation-induced brain injury model. Although a further increase in cognitive function was not observed, brain injury was aggravated in whole-brain irradiated mice to some extent. The protective effects of depleted intestinal flora and the utilization of the brain-gut axis open new avenues for development of innovative therapeutic strategies for radiation-induced brain injury.


2022 ◽  
pp. 273-299
Author(s):  
Palanisamy Athiyaman Balakumaran ◽  
K. Divakar ◽  
Raveendran Sindhu ◽  
Ashok Pandey ◽  
Parameswaran Binod
Keyword(s):  

2022 ◽  
pp. 3-27
Author(s):  
Ankur Anavkar ◽  
Nimisha Patel ◽  
Ahmad Ali ◽  
Walhe Rajan ◽  
Hina Alim
Keyword(s):  

2022 ◽  
Author(s):  
Robert N Helsley ◽  
Tatsunori Miyata ◽  
Anagha Kadam ◽  
Varadharajan Venkateshwari ◽  
Naseer Sangwan ◽  
...  

Background:There is mounting evidence that microbes resident in the human intestine contribute to diverse alcohol-associated liver diseases (ALD) including the most deadly form known as alcohol-associated hepatitis (AH). However, mechanisms by which gut microbes synergize with excessive alcohol intake to promote liver injury are poorly understood. Furthermore, whether drugs that selectively target gut microbial metabolism can improve ALD has never been tested. Methods: We used liquid chromatography tandem mass spectrometry to quantify the levels of microbe and host choline co-metabolites in healthy controls and AH patients, finding elevated levels of the microbial metabolite trimethylamine (TMA) in AH. In subsequent studies, we treated mice with non-lethal bacterial choline TMA lyase (CutC/D) inhibitors to blunt gut microbedependent production of TMA in the context of chronic ethanol administration. Indices of liver injury were quantified by complementary RNA sequencing, biochemical, and histological approaches. In addition, we examined the impact of ethanol consumption and TMA lyase inhibition on gut microbiome structure via 16S rRNA sequencing. Results: We show the gut microbial choline metabolite trimethylamine (TMA) is elevated in AH patients and correlates with reduced hepatic expression of the TMA oxygenase flavin-containing monooxygenase 3 (FMO3). Provocatively, we find that small molecule inhibition of gut microbial CutC/D activity protects mice from ethanol-induced liver injury. CutC/D inhibitor-driven improvement in ethanol-induced liver injury is associated with distinct reorganization of the gut microbiome and host liver transcriptome. Conclusions: The microbial metabolite TMA is elevated in patients with AH, and inhibition of TMA production from gut microbes can protect mice from ethanol-induced liver injury.


2021 ◽  
Author(s):  
Patrick Donabedian ◽  
Elizabeth Dawson ◽  
Qiuhong Li ◽  
Jinghua Chen
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document