scholarly journals A broadly cross-reactive monoclonal antibody against hepatitis E virus capsid antigen

Author(s):  
Barbara Kubickova ◽  
Jörg A. Schenk ◽  
Franziska Ramm ◽  
Kornelija Markuškienė ◽  
Jochen Reetz ◽  
...  

Abstract To generate a hepatitis E virus (HEV) genotype 3 (HEV-3)–specific monoclonal antibody (mAb), the Escherichia coli–expressed carboxy-terminal part of its capsid protein was used to immunise BALB/c mice. The immunisation resulted in the induction of HEV-specific antibodies of high titre. The mAb G117-AA4 of IgG1 isotype was obtained showing a strong reactivity with the homologous E. coli, but also yeast-expressed capsid protein of HEV-3. The mAb strongly cross-reacted with ratHEV capsid protein derivatives produced in both expression systems and weaker with an E. coli–expressed batHEV capsid protein fragment. In addition, the mAb reacted with capsid protein derivatives of genotypes HEV-2 and HEV-4 and common vole hepatitis E virus (cvHEV), produced by the cell-free synthesis in Chinese hamster ovary (CHO) and Spodoptera frugiperda (Sf21) cell lysates. Western blot and line blot reactivity of the mAb with capsid protein derivatives of HEV-1 to HEV-4, cvHEV, ratHEV and batHEV suggested a linear epitope. Use of truncated derivatives of ratHEV capsid protein in ELISA, Western blot, and a Pepscan analysis allowed to map the epitope within a partially surface-exposed region with the amino acid sequence LYTSV. The mAb was also shown to bind to human patient–derived HEV-3 from infected cell culture and to hare HEV-3 and camel HEV-7 capsid proteins from transfected cells by immunofluorescence assay. The novel mAb may serve as a useful tool for further investigations on the pathogenesis of HEV infections and might be used for diagnostic purposes. Key points • The antibody showed cross-reactivity with capsid proteins of different hepeviruses. • The linear epitope of the antibody was mapped in a partially surface-exposed region. • The antibody detected native HEV-3 antigen in infected mammalian cells.

Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1385
Author(s):  
Giulia Pezzoni ◽  
Lidia Stercoli ◽  
Eleonora Pegoiani ◽  
Emiliana Brocchi

To evaluate the antigenic properties of Hepatitis E Virus (HEV) Open Reading Frame 2 and 3 (ORF2 and ORF3) codified proteins, we expressed different portions of ORF2 and the entire ORF3 in E. coli, a truncated ORF2, was also expressed in baculovirus. A panel of 37 monoclonal antibodies (MAbs) was raised against ORF2 (1–660 amino acids) and MAbs were mapped and characterized using the ORF2 expressed portions. Selected HEV positive and negative swine sera were used to evaluate ORF2 and ORF3 antigens’ immunogenicity. The MAbs were clustered in six groups identifying six antigenic regions along the ORF2. Only MAbs binding to the sixth ORF2 antigenic region (394–608 aa) were found to compete with HEV positive sera and efficiently catch the recombinant antigen expressed in baculovirus. The ORF2 portion from 394–608 aa demonstrated to include most immunogenic epitopes with 85% of HEV positive swine sera reacting against the region from 461–544 aa. Only 5% of the selected HEV sera reacted against the ORF3 antigen.


2008 ◽  
Vol 89 (2) ◽  
pp. 500-508 ◽  
Author(s):  
E.-M. Zhou ◽  
H. Guo ◽  
F. F. Huang ◽  
Z. F. Sun ◽  
X. J. Meng

Author(s):  
Mohamed Boumaiza ◽  
Khaled Trabelsi ◽  
Zeineb Choucha ◽  
Ines Akrouti ◽  
Serena Leone ◽  
...  

2019 ◽  
Vol 78 (3) ◽  
pp. 232-240 ◽  
Author(s):  
Olivier Marion ◽  
Nicolas Capelli ◽  
Sebastien Lhomme ◽  
Martine Dubois ◽  
Mélanie Pucelle ◽  
...  

2019 ◽  
Vol 93 (11) ◽  
Author(s):  
Huixia Li ◽  
Mengnan Fan ◽  
Baoyuan Liu ◽  
Pinpin Ji ◽  
Yiyang Chen ◽  
...  

ABSTRACT Avian hepatitis E virus (HEV) is the main causative agent of big liver and spleen disease in chickens. Due to the absence of a highly effective cell culture system, there are few reports about the interaction between avian HEV and host cells. In this study, organic anion-transporting polypeptide 1A2 (OATP1A2) from chicken liver cells was identified to interact with ap237, a truncated avian HEV capsid protein spanning amino acids 313 to 549, by a glutathione S-transferase (GST) pulldown assay. GST pulldown and indirect enzyme-linked immunosorbent assays (ELISAs) further confirmed that the extracellular domain of OATP1A2 directly binds with ap237. The expression levels of OATP1A2 in host cells are positively correlated with the amounts of ap237 attachment and virus infection. The distribution of OATP1A2 in different tissues is consistent with avian HEV infection in vivo. Finally, when the functions of OATP1A2 in cells are inhibited by its substrates or an inhibitor or blocked by ap237 or anti-OATP1A2 sera, attachment to and infection of host cells by avian HEV are significantly reduced. Collectively, these results displayed for the first time that OATP1A2 interacts with the avian HEV capsid protein and can influence viral infection in host cells. The present study provides new insight to understand the process of avian HEV infection of host cells. IMPORTANCE The process of viral infection is centered around the interaction between the virus and host cells. Due to the lack of a highly effective cell culture system in vitro, there is little understanding about the interaction between avian HEV and its host cells. In this study, a total of seven host proteins were screened in chicken liver cells by a truncated avian HEV capsid protein (ap237) in which the host protein OATP1A2 interacted with ap237. Overexpression of OATP1A2 in the cells can promote ap237 adsorption as well as avian HEV adsorption and infection of the cells. When the function of OATP1A2 in cells was inhibited by substrates or inhibitors, attachment and infection by avian HEV significantly decreased. The distribution of OATP1A2 in different chicken tissues corresponded with that in tissues during avian HEV infection. This is the first finding that OATP1A2 is involved in viral infection of host cells.


2007 ◽  
Vol 14 (5) ◽  
pp. 555-563 ◽  
Author(s):  
Junkun He ◽  
Robert A. Kuschner ◽  
Vincent Dewar ◽  
Pierre Voet ◽  
Ludmila V. Asher ◽  
...  

Pathogens ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 295 ◽  
Author(s):  
Mohamed A. El-Mokhtar ◽  
Essam R. Othman ◽  
Maha Y. Khashbah ◽  
Ali Ismael ◽  
Mohamed AA Ghaliony ◽  
...  

Hepatitis E virus (HEV) is the most common cause of acute viral hepatitis worldwide. The tropism of HEV is not restricted to the liver, and the virus replicates in other organs. Not all the extrahepatic targets for HEV are identified. Herein, we found that non-decidualized primary human endometrial stromal cells (PHESCs), which are precursors for the decidua and placenta, are susceptible to HEV infection. PHESCs, isolated from healthy non-pregnant women (n = 5), were challenged with stool-derived HEV-1 and HEV-3. HEV RNA was measured by qPCR, and HEV capsid protein was assessed by flow cytometry, immunofluorescence (IF), and ELISA. HEV infection was successfully established in PHESCs. Intracellular and extracellular HEV RNA loads were increased over time, indicating efficient replication in vitro. In addition, HEV capsid protein was detected intracellularly in the HEV-infected PHESCs and accumulated extracellularly over time, confirming the viral assembly and release from the infected cells. HEV-1 replicated more efficiently in PHESCs than HEV-3 and induced more inflammatory responses. Ribavirin (RBV) treatment abolished the replication of HEV in PHESCs. In conclusion, PHESCs are permissive to HEV infection and these cells could be an endogenous source of HEV infection during pregnancy and mediate HEV vertical transmission.


Sign in / Sign up

Export Citation Format

Share Document