scholarly journals Quantification of liver function using gadoxetic acid-enhanced MRI

2020 ◽  
Vol 45 (11) ◽  
pp. 3532-3544
Author(s):  
Sarah Poetter-Lang ◽  
Nina Bastati ◽  
Alina Messner ◽  
Antonia Kristic ◽  
Alexander Herold ◽  
...  

Abstract The introduction of hepatobiliary contrast agents, most notably gadoxetic acid (GA), has expanded the role of MRI, allowing not only a morphologic but also a functional evaluation of the hepatobiliary system. The mechanism of uptake and excretion of gadoxetic acid via transporters, such as organic anion transporting polypeptides (OATP1,3), multidrug resistance-associated protein 2 (MRP2) and MRP3, has been elucidated in the literature. Furthermore, GA uptake can be estimated on either static images or on dynamic imaging, for example, the hepatic extraction fraction (HEF) and liver perfusion. GA-enhanced MRI has achieved an important role in evaluating morphology and function in chronic liver diseases (CLD), allowing to distinguish between the two subgroups of nonalcoholic fatty liver diseases (NAFLD), simple steatosis and nonalcoholic steatohepatitis (NASH), and help to stage fibrosis and cirrhosis, predict liver transplant graft survival, and preoperatively evaluate the risk of liver failure if major resection is planned. Finally, because of its noninvasive nature, GA-enhanced MRI can be used for long-term follow-up and post-treatment monitoring. This review article aims to describe the current role of GA-enhanced MRI in quantifying liver function in a variety of hepatobiliary disorders.

Author(s):  
Qiang Wang ◽  
Anrong Wang ◽  
Ernesto Sparrelid ◽  
Jiaxing Zhang ◽  
Ying Zhao ◽  
...  

Abstract   Objectives Effective and non-invasive biomarkers to predict and avoid posthepatectomy liver failure (PHLF) are urgently needed. This systematic review aims to evaluate the efficacy of gadoxetic acid–enhanced MRI-derived parameters as an imaging biomarker in preoperative prediction of PHLF. Methods A systematic literature search was performed in the databases of PubMed/Medline, Web of Science, Embase, and Cochrane Library up to 11 December 2020. Studies evaluating the incidence of PHLF on patients who underwent hepatectomy with preoperative liver function assessment using gadoxetic acid–enhanced MRI were included. Data was extracted using pre-designed tables. The Quality In Prognostic Studies (QUIPS) tool was adopted to evaluate the risk of bias. Results A total of 15 studies were identified for qualitative synthesis and most studies were marked as low to moderate risk of bias in each domain of QUIPS. The most commonly used parameter was relative liver enhancement or its related parameters. The reported incidence of PHLF ranged from 3.9 to 40%. The predictive sensitivity and specificity of gadoxetic acid–enhanced MRI parameters varied from 75 to 100% and from 54 to 93% in ten reported studies. A majority of the studies revealed that the gadoxetic acid–enhanced MRI parameter was a predictor for PHLF. Conclusions Gadoxetic acid–enhanced MRI showed a high predictive capacity for PHLF and represents a promising imaging biomarker in prediction of PHLF. Multicenter, prospective trials with large sample size and reliable, unified liver function parameters are required to validate the efficacy of individual liver function parameters. Key Points • There is an obvious heterogeneity of the published studies, not only in variance of MRI liver function parameters but also in indication and extent of the liver resection. • Signal intensity (SI)–based parameters derived from gadoxetic acid–enhanced MRI are the commonly used method for PHLF prediction. • Gadoxetic acid–enhanced MRI-derived parameters showed high predictive efficacy for PHLF and can potentially serve as a predictor for the incidence of PHLF.


Author(s):  
Marcelle de Carvalho Ribeiro ◽  
Gyongyi Szabo

The involvement of inflammasomes in the proinflammatory response observed in chronic liver diseases, such as alcohol-associated liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD), is widely recognized. Although there are different types of inflammasomes, most studies to date have given attention to NLRP3 (nucleotide-binding oligomerization domain-like receptor family, pyrin domain containing 3) in the pathogenesis of ALD, NAFLD/nonalcoholic steatohepatitis, and fibrosis. Canonical inflammasomes are intracellular multiprotein complexes that are assembled after the sensing of danger signals and activate caspase-1, which matures interleukin (IL)-1β, IL-18, and IL-37 and also induces a form of cell death called pyroptosis. Noncanonical inflammasomes activate caspase-11 to induce pyroptosis. We discuss the different types of inflammasomes involved in liver diseases with a focus on ( a) signals and mechanisms of inflammasome activation, ( b) the role of different types of inflammasomes and their products in the pathogenesis of liver diseases, and ( c) potential therapeutic strategies targeting components of the inflammasomes or cytokines produced upon inflammasome activation. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 17 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2020 ◽  
Vol 93 (1112) ◽  
pp. 20190989
Author(s):  
Cathryn L Hui ◽  
Marcela Mautone

A variety of patterns of enhancement of liver lesions and liver parenchyma is observed in the hepatobiliary phase (HBP) of gadoxetic acid-enhanced MRI. It is becoming increasingly apparent that many lesions may exhibit HBP enhancement. Much of the literature regarding the role of gadoxetic acid-enhanced MRI in characterising liver lesions is dichotomous, focusing on whether lesions are enhancing or non-enhancing in the HBP, rather than examining the patterns of enhancement. We provide a pattern-based description of HBP enhancement of liver parenchyma and of liver lesions. The role of OATP1B3 transporters, hepatocyte function and lesion composition in influencing patterns of HBP hyperintensity are discussed.


2017 ◽  
Vol 89 (8) ◽  
pp. 120-128 ◽  
Author(s):  
K A Aitbaev ◽  
I T Murkamilov ◽  
V V Fomin

The paper gives an update on the role of the gut microbiome (GM) in the development of nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, alcoholic liver disease, liver cirrhosis (LC), and its complications, such as hepatic encephalopathy (HE) and hepatocellular carcinoma (HCC), and discusses the possibilities of its correction with prebiotics, probiotics, synbiotics, antibiotics, and fecal microbiota transplantation (FMT). The pathophysiology of the liver diseases in question demonstrates some common features that are characterized by pathogenic changes in the composition of the gastrointestinal tract microflora, by intestinal barrier impairments, by development of endotoxemia, by increased liver expression of proinflammatory factors, and by development of liver inflammation. In progressive liver disease, the above changes are more pronounced, which contributes to the development of LC, HE, and HCC. GM modulation using prebiotics, probiotics, synbiotics, antibiotics, and FMT diminishes dysbacteriosis, strengthens the intestinal mucosal barrier, reduces endotoxemia and liver damage, and positively affects the clinical manifestations of HE. Further investigations are needed, especially in humans, firstly, to assess a relationship of GM to the development of liver diseases in more detail and, secondly, to obtain evidence indicating the therapeutic efficacy of GM-modulating agents in large-scale, well-designed, randomized, controlled, multicenter studies.


2019 ◽  
Vol 29 (12) ◽  
pp. 6600-6610 ◽  
Author(s):  
Lucian Beer ◽  
Mattias Mandorfer ◽  
Nina Bastati ◽  
Sarah Poetter-Lang ◽  
Dietmar Tamandl ◽  
...  

Author(s):  
Osman Öcal ◽  
Bora Peynircioglu ◽  
Christian Loewe ◽  
Otto van Delden ◽  
Vincent Vandecaveye ◽  
...  

Abstract Objectives To evaluate the correlation between liver enhancement on hepatobiliary phase and liver function parameters in a multicenter, multivendor study. Methods A total of 359 patients who underwent gadoxetic acid–enhanced MRI using a standardized protocol with various scanners within a prospective multicenter phase II trial (SORAMIC) were evaluated. The correlation between liver enhancement on hepatobiliary phase normalized to the spleen (liver-to-spleen ratio, LSR) and biochemical laboratory parameters, clinical findings related to liver functions, liver function grading systems (Child-Pugh and Albumin-Bilirubin [ALBI]), and scanner characteristics were analyzed using uni- and multivariate analyses. Results There was a significant positive correlation between LSR and albumin (rho = 0.193; p < 0.001), platelet counts (rho = 0.148; p = 0.004), and sodium (rho = 0.161; p = 0.002); and a negative correlation between LSR and total bilirubin (rho = −0.215; p < 0.001) and AST (rho = −0.191; p < 0.001). Multivariate analysis confirmed independent significance for each of albumin (p = 0.022), total bilirubin (p = 0.045), AST (p = 0.031), platelet counts (p = 0.012), and sodium (p = 0.006). The presence of ascites (1.47 vs. 1.69, p < 0.001) and varices (1.55 vs. 1.69, p = 0.006) was related to significantly lower LSR. Similarly, patients with ALBI grade 1 had significantly higher LSR than patients with grade 2 (1.74 ± 0.447 vs. 1.56 ± 0.408, p < 0.001); and Child-Pugh A patients had a significantly higher LSR than Child-Pugh B (1.67 ± 0.44 vs. 1.49 ± 0.33, p = 0.021). Also, LSR was negatively correlated with MELD-Na scores (rho = −0.137; p = 0.013). However, one scanner brand was significantly associated with lower LSR (p < 0.001). Conclusions The liver enhancement on the hepatobiliary phase of gadoxetic acid–enhanced MRI is correlated with biomarkers of liver functions in a multicenter cohort. However, this correlation shows variations between scanner brands. Key Points • The correlation between liver enhancement on the hepatobiliary phase of gadoxetic acid–enhanced MRI and liver function is consistent in a multicenter-multivendor cohort. • Signal intensity–based indices (liver-to-spleen ratio) can be used as an imaging biomarker of liver function. • However, absolute values might change between vendors.


Sign in / Sign up

Export Citation Format

Share Document