A mechanistic study of immune system activation by fusion of antigens with the ligand-binding domain of CTLA4

2006 ◽  
Vol 55 (12) ◽  
pp. 1504-1514 ◽  
Author(s):  
Dhanalakshmi Chinnasamy ◽  
Matt Tector ◽  
Nachimuthu Chinnasamy ◽  
Kate Dennert ◽  
Karen M. Kozinski ◽  
...  
Author(s):  
Hari Balaji ◽  
Selvaraj Ayyamperuma ◽  
Niladri Saha ◽  
Shyam Sundar Pottabathula ◽  
Jubie Selvaraj ◽  
...  

: Vitamin-D deficiency is a global concern. Gene mutations in the vitamin D receptor’s (VDR) ligand binding domain (LBD) variously alter the ligand binding affinity, heterodimerization with retinoid X receptor (RXR) and inhibit coactivator interactions. These LBD mutations may result in partial or total hormone unresponsiveness. A plethora of evidence report that selective long chain polyunsaturated fatty acids (PUFAs) including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and arachidonic acid (AA) bind to the ligand-binding domain of VDR and lead to transcriptional activation. We therefore hypothesize that selective PUFAs would modulate the dynamics and kinetics of VDRs, irrespective bioactive of vitamin-D binding. The spatial arrangements of the selected PUFAs in VDR active site were examined by in-silico docking studies. The docking results revealed that PUFAs have fatty acid structure-specific binding affinity towards VDR. The calculated EPA, DHA & AA binding energies (Cdocker energy) were lesser compared to vitamin-D in wild type of VDR (PDB id: 2ZLC). Of note, the DHA has higher binding interactions to the mutated VDR (PDB id: 3VT7) when compared to the standard Vitamin-D. Molecular dynamic simulation was utilized to confirm the stability of potential compound binding of DHA with mutated VDR complex. These findings suggest the unique roles of PUFAs in VDR activation and may offer alternate strategy to circumvent vitamin-D deficiency.


Author(s):  
Till S. Zimmer ◽  
Diede W.M. Broekaart ◽  
Mark Luinenburg ◽  
Caroline Mijnsbergen ◽  
Jasper J. Anink ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document