scholarly journals Enhanced anti-tumor efficacy of IL-7/CCL19-producing human CAR-T cells in orthotopic and patient-derived xenograft tumor models

Author(s):  
Shunsuke Goto ◽  
Yukimi Sakoda ◽  
Keishi Adachi ◽  
Yoshitaka Sekido ◽  
Seiji Yano ◽  
...  
2017 ◽  
Vol 7 (11) ◽  
pp. 1306-1319 ◽  
Author(s):  
Melinda Mata ◽  
Claudia Gerken ◽  
Phuong Nguyen ◽  
Giedre Krenciute ◽  
David M. Spencer ◽  
...  

JCI Insight ◽  
2019 ◽  
Vol 4 (18) ◽  
Author(s):  
Lars Wallstabe ◽  
Claudia Göttlich ◽  
Lena C. Nelke ◽  
Johanna Kühnemundt ◽  
Thomas Schwarz ◽  
...  
Keyword(s):  
T Cells ◽  

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A135-A135
Author(s):  
Hee Jun Lee ◽  
Cody Cullen ◽  
John Murad ◽  
Jason Yang ◽  
Wen-Chung Chang ◽  
...  

BackgroundWhile chimeric antigen receptor (CAR) T cell therapy has shown impressive clinical efficacy for hematological malignancies,1 efficacy remains limited for solid tumors due in large part to the immunosuppressive tumor microenvironment.2 Tumor-associated glycoprotein 72 (TAG72) is an aberrantly glycosylated protein overexpressed on ovarian cancer3 and is an exciting target for CAR T cell immunotherapy. Our lab previously developed a second-generation TAG72 CAR T cell product and showed its potency against TAG72-expressing ovarian tumor cells both in vitro and in preclinical mouse models.4 We report here further modification of our TAG72 CAR T cells, with incorporation of interleukin-12 (IL-12) and interleukin-15 (IL-15), and evaluate the therapeutic benefits in peritoneal ovarian tumor models.MethodsIn this preclinical study, we build upon our earlier work with in vitro and in vivo evaluation of 9 different second-generation TAG72 CAR constructs varying in single-chain variable fragment, extracellular spacer, transmembrane, and intracellular co-stimulatory domains. We then engineer CAR T cells with two types of cytokines – IL-12 and IL-15 – and put these engineered cells against challenging in vivo tumor models.ResultsThrough in vitro and in vivo studies, we identify the most optimal construct with which we aim to evaluate in a phase 1 clinical trial targeting TAG72-positive ovarian cancer in 2021. Despite thorough optimizations to the CAR backbone, CAR T cells can be additionally engineered for improved anti-tumor response. Therefore, we further engineered CAR T cells with IL-12 or IL-15 production that greatly improves the effectiveness of TAG72-CAR T cells in difficult-to-treat in vivo tumor models. We observed that modification of CAR T cells with IL-15 displayed toxicity when regionally delivered in vivo, yet introduction of IL-12 not only demonstrated safe and superior therapeutic responses, but also allowed the regional administration of CAR T cells to address systemic disease. We are now expanding these findings by evaluating these therapies using syngeneic immunocompetent mouse tumor models.ConclusionsThe tumor microenvironment (TME) harbors various factors that thwart the killing of tumor cells by CAR T cells. Thus, CAR T cells will likely require further engineering to overcome this barrier. We show that amplifying cytokine pathways is one way to overcome the TME and improve the efficacy of CAR T cell therapy for solid tumors.ReferencesMaude SL, Teachey DT, Porter DL, Grupp SA. CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood 2015 Jun 25;125(26):4017–23.Priceman SJ, Forman SJ, Brown CE. Smart CARs engineered for cancer immunotherapy. Curr Opin Oncol 2015 Nov;27(6):466–74.Chauhan SC, Vinayek N, Maher DM, Bell MC, Dunham KA, Koch MD, Lio Y, Jaggi M. Combined Staining of TAG-72, MUC1, and CA125 Improves Labeling Sensitivity in Ovarian Cancer: Antigens for Multi-targeted Antibody-guided Therapy. J Histochem Cytochem 2007 Aug;55(8):867–75.Murad JP, Kozlowska AK, Lee HJ, Ramamurthy M, Chang WC, Yazaki P, Colcher D, Shively J, Cristea M, Forman SJ, Priceman SJ. Effective Targeting of TAG72+ Peritoneal Ovarian Tumors via Regional Delivery of CAR-Engineered T Cells. Front Immunol 2018 Nov 19;9:2268.


2020 ◽  
Vol 1 (3) ◽  
pp. 100174
Author(s):  
Nazanin Tatari ◽  
William T. Maich ◽  
Sabra K. Salim ◽  
Dillon Mckenna ◽  
Chitra Venugopal ◽  
...  

2019 ◽  
Vol 37 (8_suppl) ◽  
pp. 112-112 ◽  
Author(s):  
Helly Pimentel ◽  
Helen Jarnagin ◽  
Hailing Zong ◽  
Courtney Todorov ◽  
Courtney M. Anderson ◽  
...  

112 Background: Chimeric antigen receptor (CAR) T cell therapy is highly effective in treating hematologic malignancies, and major efforts are being made to achieve similar efficacy in solid tumors. The greater potency of CAR-T cells compared to antibody therapeutics demands a more stringent CAR-T target safety assessment to avoid adverse events resulting from “on-target/off-tumor” activity. Furthermore, it is critical to track and monitor CAR+ T cells within intact tissue and tumor to understand the mechanisms underlying off-tumor toxicity and efficacy in tumor killing. Methods: We employed the RNAscope in situ hybridization (ISH) technology to assess target expression specificity and to track CAR-T cell distribution and activation in xenograft and host tissues using the RPMI-8226 xenograft mouse model. Results: For the CAR-T target candidates, Target X and Target Y, RNA ISH revealed that Target X was only expressed in the xenograft tumor and in no mouse organs, while Target Y was found to be expressed at low levels in mouse lung and liver, as well as in the xenograft tumor. Duplex RNA ISH assays with probes targeting the CAR 3’ UTR and either IFNG or GZMB allowed for highly sensitive and specific detection of CAR-T cells and their activation state in both tumor and normal tissues from vehicle, Target X CAR-T cell, or Target Y CAR-T cell treated mice. Activated Target X CAR-T cells expressing GZMB and IFNG were found only in the xenograft tumor, where Target X was expressed. In contrast, activated Target Y CAR-T cells were found almost exclusively in mouse lung and liver, with very few Target Y CAR-T cells being found in the xenograft tumor. Lastly, a multiplex ISH-IHC approach confirmed the presence of activated Target X CAR-T cells in the xenograft tumor through simultaneous detection of the Target X CAR 3’ UTR, IFNG, GZMB, and CD3. Conclusions: These data demonstrate how the RNAscope assay can be utilized for CAR-T cell efficacy and safety/toxicity assessment in preclinical models by detecting very low levels of target antigen expression in off-tumor tissues and monitoring CAR-T cell pharmacodynamics and activation in tumor models and can also be applied for assessing TCR-T cell activity in tumors.


Sign in / Sign up

Export Citation Format

Share Document