Letter-to-the-Editor: Ideal Female Breast Shape and Surgeons and Patients’ Preferences

Author(s):  
Bishara S. Atiyeh ◽  
Fadl Chahine
2018 ◽  
Vol 89 (4) ◽  
pp. 590-611 ◽  
Author(s):  
Jie Pei ◽  
Huiju Park ◽  
Susan P. Ashdown

In this study we explore the variation in female breast shape across the younger (age: 18–45), non-obese (BMI < 30) North American Caucasian population, a population that has not previously been well-represented in studies of breast shape. A method of classifying breast shape was developed based on multiple data-mining techniques. Forty-one relative measurements (i.e., ratios and angles) were constructed from 66 raw measurements (circumferences, depths, widths, etc.), extracted from 478 CAESAR (Civilian American and European Surface Anthropometry Resource) scans, using self-developed Matlab® programs. Seventy subjects were regarded as outliers and were removed. The remaining data were transformed and standardized to ensure robust analysis. To judge results, an algorithm was developed to visualize clustering outcomes in the form of side profiles of breasts. The results of three clustering methods, namely hierarchical, K-means, and K-medoids clustering, were compared. Finally, breast shapes were categorized into three and five groups by two different cluster number selection criteria proposed by the study: (1) based on misclassification rate; (2) based on the goodness-of-fit of the model. Several of the relative body measurements were identified to be critical in defining breast shape. The findings and the proposed methods of this study can contribute to the development of improved shape and sizing systems of bra products that work for both manufacturers and consumers. The new methodology developed in this study can also be applied to other types of intimate apparel products where an understanding of body shape plays a key role in body support, comfort, and fit.


2011 ◽  
Vol 331 ◽  
pp. 101-104
Author(s):  
Su Zhen Liang

The pattern design of brassieres is the core technology for the design and manufacture of brassieres, while the female breast shape and part dimensions are the foundations for pattern design of brassieres. Based upon 3D body scanning, this paper studied the relationship between the breast root shape and the steel ring by considering the features of the pattern design of the brassiere. It concludes that the breast root girth is a complicated three-dimensional curve; it’s inappropriate for the neighboring size’s brassieres to adopt the steel ring with the same specification; the material design of the steel ring should be moderate. The purpose is to provide human body basis for pattern design of brassieres and achieve more standard and scientific pattern design of the brassiere by the underwear enterprises.


Author(s):  
Jose-Luis Gonzalez-Hernandez ◽  
Satish G. Kandlikar ◽  
Donnette Dabydeen ◽  
Lori Medeiros ◽  
Pradyumna Phatak

Infrared (IR) breast thermography has been associated with the early detection of breast cancer (BC). However, findings in previous studies have been inconclusive. The upright position of subjects during imaging introduces errors in interpretation, because it blocks the optical access in the inframammary fold region and alters the temperature due to contact between breast and chest wall. These errors can be avoided by imaging breasts in prone position. Although the numerical simulations provide insight into thermal characteristics of the female breast with a tumor, most simulations in the past have used cubical and hemispherical breast models. We hypothesize that a breast model with the actual breast shape will provide true thermal characteristics that are useful in tumor detection. A digital breast model in prone position is developed to generate the surface temperature profiles for breasts with tumors. The digital breast model is generated from sequential magnetic resonance imaging (MRI) images and simulations are performed using finite volume method employing Pennes bioheat equation. We investigated the effect of varying the tumor metabolic activity on the surface temperature profile. We compared the surface temperature profile for various tumor metabolic activities with a case without tumor. The resulting surface temperature rise near the location of the tumor was between 0.665 and 1.023 °C, detectable using modern IR cameras. This is the first time that numerical simulations are conducted in a model with the actual breast shape in prone position to study the surface temperature changes induced by BC.


1978 ◽  
Vol 9 (3) ◽  
pp. 197-200
Author(s):  
Peter B. Smith
Keyword(s):  

1994 ◽  
Vol 3 (1) ◽  
pp. 89-89
Author(s):  
Lawrence I. Shotland
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document