Laboratory parallel-beam transmission X-ray powder diffraction investigation of the thermal behavior of nitratine NaNO3: spontaneous strain and structure evolution

2011 ◽  
Vol 38 (7) ◽  
pp. 531-541 ◽  
Author(s):  
Paolo Ballirano
1985 ◽  
Vol 29 ◽  
pp. 243-250 ◽  
Author(s):  
W. Parrish ◽  
M. Hart ◽  
C. G. Erickson ◽  
N. Masciocchi ◽  
T. C. Huang

AbstractThe instrumentation developed for poly crystalline diffractometry using the storage ring at the Stanford Synchrotron Radiation Laboratory is described. A pair of automated vertical scan diffractometers was used for a Si (111) channel monochromator and the powder specimens. The parallel beam powder diffraction was defined by horizontal parallel slits which had several times higher intensity than a receiving slit at the same resolution. The patterns were obtained with 2:1 scanning with’ a selected monochromatic beam, and an energy dispersive diffraction method in which the monochromator is step-scanned, and the specimen and scintillation counter are fixed. Both methods use the same instrumentation.


2021 ◽  
Vol 106 (1) ◽  
pp. 123-134
Author(s):  
Ernesto Mesto ◽  
Salvatore Laurita ◽  
Maria Lacalamita ◽  
Rosa Sinisi ◽  
Giovanna Rizzo ◽  
...  

Abstract The crystal chemistry and thermal behavior of Fe-carpholite from the Pollino Massif have been investigated by a multi-method approach. A combination of optical microscopy, scanning electron microscopy, mRaman spectroscopy, thermal analysis, room-temperature single-crystal X-ray diffraction, and high-temperature X-ray powder diffraction was employed. Field and micromorphological observations showed that the studied carpholite occurs in veins embedded in fine-grained matapelites and coexist with quartz, calcite, chlorite, and phengite. In particular, the tiny carpholite crystals are closely associated with quartz, suggesting simultaneous formation. Structure refinements from single-crystal X-ray diffraction confirm that carpholite crystallizes in the Ccce space group. Anisotropic refinements converged at 2.3 ≤ R (%) ≤ 2.6 and yielded unit-cell parameters a ~13.77 Å, b ~20.16 Å, c ~5.11 Å, and V ~1419 Å3. An XFe [i.e., the molar fraction Fe2+/(Mg+Fe2++Mn)] of ~0.6 was derived from the refined occupancy at the M1 site and is correlated to structural expansion mainly along the b and a axes and to geometrical distortions of the M1, M2, and M3 octahedra. mRaman spectrum of unoriented Fe-carpholite crystals exhibits several bands in the 200–1200 cm–1 region, a strong peak at 3630 cm–1 and a weak peak at 3593 cm–1, the latter two of which account for the presence of two independent OH groups, as also revealed by the X-ray structure refinement. The TG curve indicates a total mass loss of 15.6% in the temperature range 30–1000 °C, and the DTA curve shows a broad endothermic band at ~400 °C, extending up to ~650 °C, and weak exothermic peaks at ~700 and 750 °C. The latter may be ascribed to the breakdown of the Fe-carpholite structure and crystallization of new phases. The in situ high-temperature X-ray powder diffraction from 30 to 1105 °C revealed no significant changes in XRD patterns from 30 to 355 °C but reflection splittings from 380 °C due to a Fe-oxidation/deprotonation process. The carpholite and deprotonated carpholite phases coexist in the temperature range 380–580 °C, whereas only the deprotonated phase is observed up to 630 °C. Above this temperature, the carpholite structure collapses and the characteristic peaks of spinel and quartz phases are observed. At 1105 °C, spinel, mullite, garnet, cristobalite, and tridymite can be clearly identified. Our results provide insight into the thermal stability of Fe-carpholites and may help understand the thermal evolution of HP/LT metasediments.


2017 ◽  
Vol 50 (5) ◽  
pp. 1331-1340 ◽  
Author(s):  
Alan A. Coelho ◽  
Matthew R. Rowles

X-ray powder diffraction patterns of cylindrical capillary specimens have substantially different peak positions, shapes and intensities relative to patterns from flat specimens. These aberrations vary in a complex manner with diffraction angle and instrument geometry. This paper describes a fast numerical procedure that accurately describes the capillary aberration in the equatorial plane for convergent focusing, divergent and parallel beam instrument geometries. Axial divergence effects are ignored and only a cross section of the capillary, a disc, is considered; it is assumed that axial divergence effects can be described using an additional correction that is independent of the disc correction. Significantly, the present implementation uses theTOPAS-Academicaberration approximation technique of averaging nearby aberrations in 2θ space to approximate in-between aberrations, which results in no more than ∼30 disc aberrations calculated over the entire 2θ range, even when the diffraction pattern comprises thousands of peaks. Finally, the disc aberration is convoluted with the emission profile and other instrument and specimen aberrations in a Rietveld refinement sense, allowing for refinement on the specimen's absorption coefficient and capillary diameter, as well as the instrument focal length. Large differences between refined and expected values give insight into instrument alignment.


1998 ◽  
Vol 37 (8) ◽  
pp. 1776-1780 ◽  
Author(s):  
Frédéric Favier ◽  
Jean-Louis Pascal ◽  
Frédérique Cunin ◽  
Andrew N. Fitch ◽  
Gavin Vaughan

1989 ◽  
Vol 22 (6) ◽  
pp. 622-623 ◽  
Author(s):  
B. Pałosz ◽  
E. Salje

Structural transformations between polytypes of a given material are expected to lead to lattice relaxations. Powder X-ray diffraction of basic AX 2 polytypes of CdI2, PbI2, SnS2 and SnSe2 showed these relaxations for the repetition unit along the stacking axis, conventionally the c axis. No variation of the lattice parameters were detected in the basal plane (001), except for CdI2 where small variations occur also for the a lattice parameter. The tensor of the spontaneous strain has its maximum component e 3 ≲ 12 × 10−4 for SnS2. The powder diffraction pattern and lattice parameters of the phases of CdI2 (2H, 12R, 4H), PbI2 (2H, 12R), SnS2 (2H, 18R, 4H) and SnSe2 (2H, 18R) are given. JCPDS Diffraction File Nos. are: 40-1468 for CdI2-12H; 40–1469 for CdI2-2H; 40-1466 for SnS2-18R, 40–1467 for SnS2-2H; 40–1465 for SnSe2-18R. The other polytypes studied in this paper have data in earlier sets of the PDF.


Sign in / Sign up

Export Citation Format

Share Document